Browsing by Subject "COLD DARK-MATTER"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Allevato, V.; Shankar, F.; Marsden, C.; Rasulov, U.; Viitanen, A.; Georgakakis, A.; Ferrara, A.; Finoguenov, A. (2021)
    The statistical distributions of active galactic nuclei (AGNs), i.e., accreting supermassive black holes (BHs), in mass, space, and time are controlled by a series of key properties, namely, the BH-galaxy scaling relations, Eddington ratio distributions, and fraction of active BH (duty cycle). Shedding light on these properties yields strong constraints on the AGN triggering mechanisms while providing a clear baseline to create useful mock catalogs for the planning of large galaxy surveys. Here we delineate a robust methodology to create mock AGN catalogs built on top of large N-body dark matter simulations via state-of-the-art semiempirical models. We show that by using as independent tests the AGN clustering at fixed X-ray luminosity, galaxy stellar mass, and BH mass, along with the fraction of AGNs in groups and clusters, it is possible to significantly narrow down the choice in the relation between BH mass and host galaxy stellar mass, the duty cycle, and the average Eddington ratio distribution, delivering well-suited constraints to guide cosmological models for the coevolution of BHs and galaxies. Avoiding such a step-by-step methodology inevitably leads to strong degeneracies in the final mock catalogs, severely limiting their usefulness in understanding AGN evolution and in survey planning and testing.
  • Allevato, V.; Viitanen, A.; Finoguenov, A.; Civano, F.; Suh, H.; Shankar, F.; Bongiorno, A.; Ferrara, A.; Gilli, R.; Miyaji, T.; Marchesi, S.; Cappelluti, N.; Salvato, M. (2019)
    Aims. We perform clustering measurements of 800 X-ray selected Chandra COSMOS Legacy (CCL) Type 2 active galactic nuclei (AGN) with known spectroscopic redshift to probe the halo mass dependence on AGN host galaxy properties, such as galaxy stellar mass M-star, star formation rate (SFR), and specific black hole accretion rate (BHAR; lambda(BHAR)) in the redshift range z;=;[0-3]. Methods. We split the sample of AGN with known spectroscopic redshits according to M-star, SFR and lambda(BHAR), while matching the distributions in terms of the other parameters, including redshift. We measured the projected two-point correlation function w(p)(r(p)) and modeled the clustering signal, for the different subsamples, with the two-halo term to derive the large-scale bias b and corresponding typical mass of the hosting halo. Results. We find no significant dependence of the large-scale bias and typical halo mass on galaxy stellar mass and specific BHAR for CCL Type 2 AGN at mean z;similar to;1, while a negative dependence on SFR is observed, i.e. lower SFR AGN reside in richer environment. Mock catalogs of AGN, matched to have the same X-ray luminosity, stellar mass, lambda(BHAR), and SFR of CCL Type 2 AGN, almost reproduce the observed M-star - M-h, lambda(BHAR) - M-h and SFR-M-h relations, when assuming a fraction of satellite AGN f(AGN)(sat) similar to 0.15fAGNsat similar to 0.15$ f_{\mathrm{AGN}}{\mathrm{sat}} \sim 0.15 $. This corresponds to a ratio of the probabilities of satellite to central AGN of being active Q;similar to;2. Mock matched normal galaxies follow a slightly steeper M-star - M-h relation, in which low mass mock galaxies reside in less massive halos than mock AGN of similar mass. Moreover, matched mock normal galaxies are less biased than mock AGN with similar specific BHAR and SFR, at least for Q > 1.
  • Lindholm, V.; Finoguenov, A.; Comparat, J.; Kirkpatrick, C. C.; Rykoff, E.; Clerc, N.; Collins, C.; Damsted, S.; Chitham, J. Ider; Padilla, N. (2021)
  • Euclid Theory Working Grp; Amendola, Luca; Montanari, Francesco (2018)
    Euclid is a European Space Agency medium-class mission selected for launch in 2020 within the cosmic vision 2015-2025 program. The main goal of Euclid is to understand the origin of the accelerated expansion of the universe. Euclid will explore the expansion history of the universe and the evolution of cosmic structures by measuring shapes and red-shifts of galaxies as well as the distribution of clusters of galaxies over a large fraction of the sky. Although the main driver for Euclid is the nature of dark energy, Euclid science covers a vast range of topics, from cosmology to galaxy evolution to planetary research. In this review we focus on cosmology and fundamental physics, with a strong emphasis on science beyond the current standard models. We discuss five broad topics: dark energy and modified gravity, dark matter, initial conditions, basic assumptions and questions of methodology in the data analysis. This review has been planned and carried out within Euclid's Theory Working Group and is meant to provide a guide to the scientific themes that will underlie the activity of the group during the preparation of the Euclid mission.
  • CORE Collaboration; Di Valentino, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Väliviita, J. (2018)
    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ACDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ACDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as similar to 10(7) as compared to Planck 2015, and 10(5) with respect to Planck 2015 + future BAO measurements.
  • Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; Eke, Vincent R.; Navarro, Julio F.; Sawala, Till; Schaller, Matthieu; Fattahi, Azadeh; Oman, Kyle A.; Theuns, Tom (2017)
    The observed stellar kinematics of dispersion-supported galaxies are often used to measure dynamical masses. Recently, several analytical relationships between the stellar line-of-sight velocity dispersion, the projected (2D) or deprojected (3D) half-light radius and the total mass enclosed within the half-light radius, relying on the spherical Jeans equation, have been proposed. Here, we use the APOSTLE cosmological hydrodynamical simulations of the Local Group to test the validity and accuracy of such mass estimators for both dispersion and rotation-supported galaxies, for field and satellite galaxies, and for galaxies of varying masses, shapes and velocity dispersion anisotropies. We find that the mass estimators of Walker et al. and Wolf et al. are able to recover the masses of dispersion-dominated systems with little systematic bias, but with a 1 sigma scatter of 25 and 23 per cent, respectively. The error on the estimated mass is dominated by the impact of the 3D shape of the stellar mass distribution, which is difficult to constrain observationally. This intrinsic scatter becomes the dominant source of uncertainty in the masses estimated for galaxies like the dwarf spheroidal (dSph) satellites of the Milky Way, where the observational errors in their sizes and velocity dispersions are small. Such scatter may also affect the inner density slopes of dSphs derived from multiple stellar populations, relaxing the significance with which Navarro-Frenk-White profiles may be excluded, depending on the degree to which the relevant properties of the different stellar populations are correlated. Finally, we derive a new optimal mass estimator that removes the residual biases and achieves a statistically significant reduction in the scatter to 20 per cent overall for dispersion-dominated galaxies, allowing more precise and accurate mass estimates.
  • Sawala, Till; Frenk, Carlos S.; Fattahi, Azadeh; Navarro, Julio F.; Bower, Richard G.; Crain, Robert A.; Dalla Vecchia, Claudio; Furlong, Michelle; Helly, John. C.; Jenkins, Adrian; Oman, Kyle A.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; Trayford, James; White, Simon D. M. (2016)
    The Local Group galaxies offer some of the most discriminating tests of models of cosmic structure formation. For example, observations of the Milky Way (MW) and Andromeda satellite populations appear to be in disagreement with N-body simulations of the 'lambda cold dark matter' (I > CDM) model: there are far fewer satellite galaxies than substructures in CDM haloes (the 'missing satellites' problem); dwarf galaxies seem to avoid the most massive substructures (the 'too-big-to-fail' problem); and the brightest satellites appear to orbit their host galaxies on a thin plane (the 'planes of satellites' problem). Here we present results from apostle (A Project Of Simulating The Local Environment), a suite of cosmological hydrodynamic simulations of 12 volumes selected to match the kinematics of the Local Group (LG) members. Applying the eagle code to the LG environment, we find that our simulations match the observed abundance of LG galaxies, including the satellite galaxies of the MW and Andromeda. Due to changes to the structure of haloes and the evolution in the LG environment, the simulations reproduce the observed relation between stellar mass and velocity dispersion of individual dwarf spheroidal galaxies without necessitating the formation of cores in their dark matter profiles. Satellite systems form with a range of spatial anisotropies, including one similar to the MWs, confirming that such a configuration is not unexpected in I > CDM. Finally, based on the observed velocity dispersion, size, and stellar mass, we provide estimates of the maximum circular velocity for the haloes of nine MW dwarf spheroidals.
  • Genina, Anna; Benitez-Llambay, Alejandro; Frenk, Carlos S.; Cole, Shaun; Fattahi, Azadeh; Navarro, Julio F.; Oman, Kyle A.; Sawala, Till; Theuns, Tom (2018)
    The existence of two kinematically and chemically distinct stellar subpopulations in the Sculptor and Fornax dwarf galaxies offers the opportunity to constrain the density profile of their matter haloes by measuring the mass contained within the well-separated half-light radii of the two metallicity subpopulations. Walker and Penarrubia have used this approach to argue that data for these galaxies are consistent with constant-density 'cores' in their inner regions and rule out 'cuspy' Navarro-Frenk-White (NFW) profiles with high statistical significance, particularly in the case of Sculptor. We test the validity of these claims using dwarf galaxies in the APOSTLE (A Project Of Simulating The Local Environment) Lambda cold dark matter cosmological hydrodynamic simulations of analogues of the Local Group. These galaxies all have NFW dark matter density profiles and a subset of them develop two distinct metallicity subpopulations reminiscent of Sculptor and Fornax. We apply a method analogous to that of Walker and Penarrubia to a sample of 50 simulated dwarfs and find that this procedure often leads to a statistically significant detection of a core in the profile when in reality there is a cusp. Although multiple factors contribute to these failures, the main cause is a violation of the assumption of spherical symmetry upon which the mass estimators are based. The stellar populations of the simulated dwarfs tend to be significantly elongated and, in several cases, the two metallicity populations have different asphericity and are misaligned. As a result, a wide range of slopes of the density profile are inferred depending on the angle from which the galaxy is viewed.
  • Biviano, A.; van der Burg, R. F. J.; Balogh, M. L.; Munari, E.; Cooper, M. C.; De Lucia, G.; Demarco, R.; Jablonka, P.; Muzzin, A.; Nantais, J.; Old, L. J.; Rudnick, G.; Vulcani, B.; Wilson, G.; Yee, H. K. C.; Zaritsky, D.; Cerulo, P.; Chan, J.; Finoguenov, A.; Gilbank, D.; Lidman, C.; Pintos-Castro, Irene; Shipley, H. (2021)
    Context. The study of galaxy cluster mass profiles (M(r)) provides constraints on the nature of dark matter and on physical processes affecting the mass distribution. The study of galaxy cluster velocity anisotropy profiles (beta (r)) informs the orbits of galaxies in clusters, which are related to their evolution. The combination of mass profiles and velocity anisotropy profiles allows us to determine the pseudo phase-space density profiles (Q(r)); numerical simulations predict that these profiles follow a simple power law in cluster-centric distance.Aims. We determine the mass, velocity anisotropy, and pseudo phase-space density profiles of clusters of galaxies at the highest redshifts investigated in detail to date.Methods. We exploited the combination of the GOGREEN and GCLASS spectroscopic data-sets for 14 clusters with mass M-200 >= 10(14) M-circle dot at redshifts 0.9 = 10(9.5) M-circle dot. We used the MAMPOSSt method to constrain several M(r) and beta (r) models, and we then inverted the Jeans equation to determine the ensemble cluster beta (r) in a non-parametric way. Finally, we combined the results of the M(r) and beta (r) analysis to determine Q(r) for the ensemble cluster.Results. The concentration c(200) of the ensemble cluster mass profile is in excellent agreement with predictions from Lambda cold dark matter (Lambda CDM) cosmological numerical simulations, and with previous determinations for clusters of similar mass and at similar redshifts, obtained from gravitational lensing and X-ray data. We see no significant difference between the total mass density and either the galaxy number density distributions or the stellar mass distribution. Star-forming galaxies are spatially significantly less concentrated than quiescent galaxies. The orbits of cluster galaxies are isotropic near the center and more radial outside. Star-forming galaxies and galaxies of low stellar mass tend to move on more radially elongated orbits than quiescent galaxies and galaxies of high stellar mass. The profile Q(r), determined using either the total mass or the number density profile, is very close to the power-law behavior predicted by numerical simulations.Conclusions. The internal dynamics of clusters at the highest redshift probed in detail to date are very similar to those of lower-redshift clusters, and in excellent agreement with predictions of numerical simulations. The clusters in our sample have already reached a high degree of dynamical relaxation.
  • Sales, Laura V.; Navarro, Julio F.; Oman, Kyle; Fattahi, Azadeh; Ferrero, Ismael; Abadi, Mario; Bower, Richard; Crain, Robert A.; Frenk, Carlos S.; Sawala, Till; Schaller, Matthieu; Schaye, Joop; Theuns, Tom; White, Simon D. M. (2017)
    The scaling of disc galaxy rotation velocity with baryonic mass (the 'baryonic Tully-Fisher' relation, BTF) has long confounded galaxy formation models. It is steeper than the M proportional to V-3 scaling relating halo virial masses and circular velocities and its zero-point implies that galaxies comprise a very small fraction of available baryons. Such low galaxy formation efficiencies may, in principle, be explained by winds driven by evolving stars, but the tightness of the BTF relation argues against the substantial scatter expected from such a vigorous feedback mechanism. We use the APOSTLE/EAGLE simulations to show that the BTF relation is well reproduced in Lambda cold dark matter (CDM) simulations that match the size and number of galaxies as a function of stellar mass. In such models, galaxy rotation velocities are proportional to halo virial velocity and the steep velocity-mass dependence results from the decline in galaxy formation efficiency with decreasing halo mass needed to reconcile the CDM halo mass function with the galaxy luminosity function. The scatter in the simulated BTF is smaller than observed, even when considering all simulated galaxies and not just rotationally supported ones. The simulations predict that the BTF should become increasingly steep at the faint end, although the velocity scatter at fixed mass should remain small. Observed galaxies with rotation speeds below similar to 40 km s(-1) seem to deviate from this prediction. We discuss observational biases and modelling uncertainties that may help to explain this disagreement in the context of Lambda CDM models of dwarf galaxy formation.
  • Viitanen, A.; Allevato, V.; Finoguenov, A.; Bongiorno, A.; Cappelluti, N.; Gilli, R.; Miyaji, T.; Salvato, M. (2019)
    Aims. We study the spatial clustering of 632 (1130) XMM-COSMOS active galactic nuclei (AGNs) with known spectroscopic or photometric redshifts in the range z = [0.1-2.5] in order to measure the AGN bias and estimate the typical mass of the hosting dark matter (DM) halo as a function of AGN host galaxy properties. Methods. We created AGN subsamples in terms of stellar mass, M-*, and specific black hole accretion rate, L-X/M-*, to study how AGN environment depends on these quantities. Further, we derived the M-*-M-halo relation for our sample of XMM-COSMOS AGNs and compared it to results in literature for normal non-active galaxies. We measured the projected two-point correlation function w(p)(r(p)) using both the classic and the generalized clustering estimator, based on photometric redshifts, as probability distribution functions in addition to any available spectroscopic redshifts. We measured the large-scale (r(p) greater than or similar to 1h(-1) Mpc) linear bias b by comparing the clustering signal to that expected of the underlying DM distribution. The bias was then related to the typical mass of the hosting halo M-halo of our AGN subsamples. Since M-* and L-X/M-* are correlated, we matched the distribution in terms of one quantity and we split the distribution in the other. Results. For the full spectroscopic AGN sample, we measured a typical DM halo mass of log(M-halo/h(-1)M(circle dot)) = 12.79(-0.43)(+0.26), similar to galaxy group environments and in line with previous studies for moderate-luminosity X-ray selected AGN. We find no significant dependence on specific accretion rate L-X/M-* with log(M-halo/h(-1)M(circle dot)) = 13.06(-0.38)(+0.23) and log(M-halo/h(-1)M(circle dot)) = 12.97(-1.26)(+0.39) for low and high Lx/M, subsamples, respectively. We also find no difference in the hosting halos in terms of M, with log(M-halo/h(-1)M(circle dot)) = 12.93(-0.62)(+0.31) (low) and log(M-halo/h(-1)M(circle dot)) = 12.90(-0.62)(+0.30) (high). By comparing the M-*-M-halo relation derived for XMM-COSMOS AGN subsamples with what is expected for normal non-active galaxies by abundance matching and clustering results, we find that the typical DM halo mass of our high M-* AGN subsample is similar to that of non-active galaxies. However, AGNs in our low M-* subsample are found in more massive halos than non-active galaxies. By excluding AGNs in galaxy groups from the clustering analysis, we find evidence that the result for low M-* may be due to larger fraction of AGNs as satellites in massive halos.
  • Fattahi, Azadeh; Navarro, Julio F.; Frenk, Carlos S.; Oman, Kyle A.; Sawala, Till; Schaller, Matthieu (2018)
    The shallow faint-end slope of the galaxy mass function is usually reproduced in Lambda cold dark matter (Lambda CDM) galaxy formation models by assuming that the fraction of baryons that turn into stars drops steeply with decreasing halo mass and essentially vanishes in haloes with maximum circular velocities Vmax <20-30 km s(-1). Dark-matter-dominated dwarfs should therefore have characteristic velocities of about that value, unless they are small enough to probe only the rising part of the halo circular velocity curve (i.e. half-mass radii, r(1/2)