Browsing by Subject "COLLAGEN-VI"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Pietilä, Elina A.; Gonzalez-Molina, Jordi; Moyano-Galceran, Lidia; Jamalzadeh, Sanaz; Zhang, Kaiyang; Lehtinen, Laura; Turunen, S. Pauliina; Martins, Tomas A.; Gultekin, Okan; Lamminen, Tarja; Kaipio, Katja; Joneborg, Ulrika; Hynninen, Johanna; Hietanen, Sakari; Grenman, Seija; Lehtonen, Rainer; Hautaniemi, Sampsa; Carpen, Olli; Carlson, Joseph W.; Lehti, Kaisa (2021)
    Due to its dynamic nature, the evolution of cancer cell-extracellular matrix (ECM) crosstalk, critically affecting metastasis and treatment resistance, remains elusive. Our results show that platinum-chemotherapy itself enhances resistance by progressively changing the cancer cell-intrinsic adhesion signaling and cell-surrounding ECM. Examining ovarian high-grade serous carcinoma (HGSC) transcriptome and histology, we describe the fibrotic ECM heterogeneity at primary tumors and distinct metastatic sites, prior and after chemotherapy. Using cell models from systematic ECM screen to collagen-based 2D and 3D cultures, we demonstrate that both specific ECM substrates and stiffness increase resistance to platinum-mediated, apoptosis-inducing DNA damage via FAK and beta 1 integrin-pMLC-YAP signaling. Among such substrates around metastatic HGSCs, COL6 was upregulated by chemotherapy and enhanced the resistance of relapse, but not treatment-naive, HGSC organoids. These results identify matrix adhesion as an adaptive response, driving HGSC aggressiveness via co-evolving ECM composition and sensing, suggesting stromal and tumor strategies for ECM pathway targeting. Platinum chemotherapy is standard of care in ovarian cancers but treatment resistance commonly develops. Here, the authors show that the extracellular microenvironment is modulated following chemotherapy and the changes in matrix proteins and stiffness alter the cell death response of tumour cells.
  • Carnielli, Carolina Moretto; Soares Macedo, Carolina Carneiro; De Rossi, Tatiane; Granato, Daniela Campos; Rivera, Cesar; Domingues, Romenia Ramos; Pauletti, Bianca Alves; Yokoo, Sami; Heberle, Henry; Busso-Lopes, Ariane Fidelis; Cervigne, Nilva Karla; Sawazaki-Calone, Iris; Meirelles, Gabriela Vaz; Marchi, Fabio Albuquerque; Telles, Guilherme Pimentel; Minghim, Rosane; Prado Ribeiro, Ana Carolina; Brandao, Thais Bianca; Castro, Gilberto de; Alejandro Gonzalez-Arriagada, Wilfredo; Gomes, Alexandre; Penteado, Fabio; Santos-Silva, Alan Roger; Lopes, Marcio Ajudarte; Rodrigues, Priscila Campioni; Sundquist, Elias; Salo, Tuula; da Silva, Sabrina Daniela; Alaoui-Jamali, Moulay A.; Graner, Edgard; Fox, Jay W.; Della Coletta, Ricardo; Paes Leme, Adriana Franco (2018)
    Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor-node-metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis.