Browsing by Subject "COLONIZATION"

Sort by: Order: Results:

Now showing items 1-20 of 69
  • Dagan, Ron; Ben-Shimol, Shalom; Simell, Birgit; Greenberg, David; Porat, Nurith; Käyhty, Helena; Givon-Lavi, Noga (2018)
    Background: We compared PCV7 serological response and protection against carriage in infants receiving 3 doses (2, 4, 6 months; 3+0 schedule) to those receiving a booster (12 months; 3+1). Methods: A prospective, randomized controlled study, conducted between 2005 and 2008, before PCVs were implemented in Israel. Healthy infants were randomized 1:1:1 to receive 3+1, 3+0 and 0+2 (control group; 12, 18 months doses). Nasopharyngeal/oropharyngeal swabs were obtained at all visits. Serum serotype-specific IgG concentrations and opsonic activities (OPA) were measured at 2, 7, 13 and 19 months. This study was registered with Current Controlled Trials, Ltd. ISRCTN28445844. Results: Overall, 544 infants were enrolled: 3+1 (n = 178), 3+0 (n = 178) and 0+2 (n = 188). Post-priming (7 months), antibody concentrations were similar in both groups, except for serotype 18C (higher in 3+0). Post-booster (13, 19 months), ELISA and OPA levels were significantly higher in 3+1 than in 3+0 group. Nasopharyngeal/oropharyngeal cultures were positive for Streptococcus pneumoniae in 2673 (543%) visits. Acquisition rates (vaccine and non-vaccine serotypes) were similar for 3+1 and 3+0 groups at 7-30 months and for 0+2 group at 19-30 months. Conclusions: PCV7 booster after 3 priming doses increased substantially IgG concentrations but did not further reduced vaccine-serotype nasopharyngeal acquisition, suggesting that protection from pneumococcal carriage does not depend primarily on serum IgG. (C) 2018 Elsevier Ltd. All rights reserved.
  • He, Suxu; Ran, Chao; Qin, Chubin; Li, Shuning; Zhang, Hongling; de Vos, Willem M.; Ringo, Einar; Zhou, Zhigang (2017)
    In this study, we tested the distribution of 49 Lactobacillus strains in the mucus and mucosa of the intestine tissue of zebrafish. We observed a progressive change in the spatial distribution of Lactobacillus strains, and suggested a division of the strains into three classes: mucus type (>70% in mucus), mucosa type (>70% in mucosa) and hybrid type (others). The hybrid type strains were more efficient in protection of zebrafish against Aeromonas hydrophila infection. Three strains representing different distribution types (JCM1149, CGMCC1.2028, and JCM 20300) were selected. The mucosa type strain JCM1149 induced higher intestinal expression of inflammatory cytokines and Hsp70 than the other strains. Furthermore, we used L. rhamnosus GG and its mutant (PB22) lacking SpaCBA pili to investigate the influence of pili on spatial distribution. LGG showed a mucosa type distribution, while PB22 revealed a hybrid distribution and the disease protection was accordingly improved. The different protection ability between LGG and PB22 did not involve the intestinal microbiota, however, LGG induced injury to the mucosa of zebrafish. Collectively, the disease protection activity of Lactobacillus in zebrafish is correlated with their spatial distribution in the intestinal tissue, with strains showing a balanced distribution (hybrid type) more efficient in protection.
  • Korpela, Katri; Salonen, Anne; Saxen, Harri; Nikkonen, Anne; Peltola, Ville; Jaakkola, Tytti; de Vos, Willem; Kolho, Kaija-Leena (2020)
    BACKGROUND The effects of antibiotics on infant gut microbiota are unclear. We hypothesized that the use of common antibiotics results in long-term aberration in gut microbiota. METHODS Antibiotic-naive infants were prospectively recruited when hospitalized because of a respiratory syncytial virus infection. Composition of fecal microbiota was compared between those receiving antibiotics during follow-up (prescribed at clinicians' discretion because of complications such as otitis media) and those with no antibiotic exposure. Fecal sampling started on day 1, then continued at 2-day intervals during the hospital stay, and at 1, 3 and 6 months at home. RESULTS One hundred and sixty-three fecal samples from 40 patients (median age 2.3 months at baseline; 22 exposed to antibiotics) were available for microbiota analyses. A single course of amoxicillin or macrolide resulted in aberration of infant microbiota characterized by variation in the abundance of bifidobacteria, enterobacteria and clostridia, lasting for several months. Recovery from the antibiotics was associated with an increase in clostridia. Occasionally, antibiotic use resulted in microbiota profiles associated with inflammatory conditions. CONCLUSIONS Antibiotic use in infants modifies especially bifidobacterial levels. Further studies are warranted whether administration of bifidobacteria will provide health benefits by normalizing the microbiota in infants receiving antibiotics.
  • Grönthal, Thomas; Eklund, Marjut; Thomson, Katariina; Piiparinen, Heli; Sironen, Tarja; Rantala, Merja (2017)
    Objectives: To investigate antimicrobial susceptibility in Staphylococcus pseudintermedius and the occurrence of methicillin-resistant S. pseudintermedius (MRSP), to explore the molecular structure of the MRSP population and to analyse risk factors for MRSP. Methods: Susceptibility data for clinical S. pseudintermedius isolates in 2011-15 were analysed using WHONET. All MRSP isolates in 2010-14 (n = 362) were typed using PFGE. Representative isolates (n = 87) of clusters were analysed using MLST and staphylococcal cassette chromosome mec (SCCmec) typing. Risk factors were analysed using logistic regression. Results: Of the clinical S. pseudintermedius (n-1958; 98% from dogs), 14% were MRSP. Resistance to other antimicrobials varied between 12% and 39%. No trends were observed over time. Among clinical specimens (from infection sites) and screening specimens (from potential carriers), respectively, 2.5% (267/10813) and 9% (211/2434) revealed MRSP. MLST revealed 42 different STs, including 19 new ones. Clonal complexes 71, 45 and 258 were the most common, but the MRSP population diversified over the years. A clinical S. pseudintermedius isolate was more likely to be MRSP if the patient was on antimicrobials at the time of sampling or was male. The presence of MRSP in screening specimens was more likely if the patient was on multiple antimicrobials at the time of sampling. Specimens from private clinics (versus the Veterinary Teaching Hospital of the University of Helsinki) had a higher likelihood of MRSP in both analyses. Conclusions: Resistance to antimicrobials among S. pseudintermedius in Finland is high, emphasizing the importance of infection control measures and susceptibility testing prior to therapy. The diverse MRSP population indicates non-clonal spread.
  • Moles, Laura; Gomez, Marta; Heilig, Hans; Bustos, Gerardo; Fuentes, Susana; de Vos, Willem; Fernandez, Leonides; Rodriguez, Juan M.; Jimenez, Esther (2013)
  • Gomez, Marta; Moles, Laura; Espinosa-Martos, Irene; Bustos, Gerardo; de Vos, Willem M.; Fernandez, Leonides; Rodriguez, Juan M.; Fuentes, Susana; Jimenez, Esther (2017)
    An abnormal colonization pattern of the preterm gut may affect immune maturation and exert a long-term influence on the intestinal bacterial composition and host health. However, follow-up studies assessing the evolution of the fecal microbiota of infants that were born preterm are very scarce. In this work, the bacterial compositions of fecal samples, obtained from sixteen 2-year-old infants were evaluated using a phylogenetic microarray; subsequently, the results were compared with those obtained in a previous study from samples of meconium and feces collected from the same infants while they stayed in the neonatal intensive care unit (NICU). In parallel, the concentration of a wide range of cytokines, chemokines, growth factors and immunoglobulins were determined in meconium and fecal samples. Globally, a higher bacterial diversity and a lower interindividual variability were observed in 2-year-olds' feces, when compared to the samples obtained during their first days of life. Hospital-associated fecal bacteria, that were dominant during the NICU stay, seemed to be replaced, two years later, by genera, which are usually predominant in the healthy adult microbiome. The immune profile of the meconium and fecal samples differed, depending on the sampling time, showing different immune maturation statuses of the gut.
  • Matharu, Dollwin; Ponsero, Alise J.; Dikareva, Evgenia; Korpela, Katri; Kolho, Kaija-Leena; de Vos, Willem M.; Salonen, Anne (2022)
    Background and aimsBirth mode and other early life factors affect a newborn's microbial colonization with potential long-term health effects. Individual variations in early life gut microbiota development, especially their effects on the functional repertoire of microbiota, are still poorly characterized. This study aims to provide new insights into the gut microbiome developmental trajectories during the first year of life. MethodsOur study comprised 78 term infants sampled at 3 weeks, 3 months, 6 months, and 12 months (n = 280 total samples), and their mothers were sampled in late pregnancy (n = 50). Fecal DNA was subjected to shotgun metagenomic sequencing. Infant samples were studied for taxonomic and functional maturation, and maternal microbiota was used as a reference. Hierarchical clustering on taxonomic profiles was used to identify the main microbiota developmental trajectories in the infants, and their associations with perinatal and postnatal factors were assessed. ResultsIn line with previous studies, infant microbiota composition showed increased alpha diversity and decreased beta diversity by age, converging toward an adult-like profile. However, we did not observe an increase in functional alpha diversity, which was stable and comparable with the mother samples throughout all the sampling points. Using a de novo clustering approach, two main infant microbiota clusters driven by Bacteroidaceae and Clostridiaceae emerged at each time point. The clusters were associated with birth mode and their functions differed mainly in terms of biosynthetic and carbohydrate degradation pathways, some of which consistently differed between the clusters for all the time points. The longitudinal analysis indicated three main microbiota developmental trajectories, with the majority of the infants retaining their characteristic cluster until 1 year. As many as 40% of vaginally delivered infants were grouped with infants delivered by C-section due to their clear and persistent depletion in Bacteroides. Intrapartum antibiotics, any perinatal or postnatal factors, maternal microbiota composition, or other maternal factors did not explain the depletion in Bacteroides in the subset of vaginally born infants. ConclusionOur study provides an enhanced understanding of the compositional and functional early life gut microbiota trajectories, opening avenues for investigating elusive causes that influence non-typical microbiota development.
  • Ligthart, Kate; Belzer, Clara; de Vos, Willem M.; Tytgat, Hanne L.P. (2020)
    Cell-surface-located proteinaceous appendages, such as flagella and fimbriae or pili, are ubiquitous in bacterial communities. Here, we focus on conserved type IV pili (T4P) produced by bacteria in the intestinal tract, one of the most densely populated human ecosystems. Computational analysis revealed that approximately 30% of known intestinal bacteria are predicted to produce T4P. To rationalize how T4P allow intestinal bacteria to interact with their environment, other microbiota members, and host cells, we review their established role in gut commensals and pathogens with respect to adherence, motility, and biofilm formation, as well as protein secretion and DNA uptake. This work indicates that T4P are widely spread among the known members of the intestinal microbiota and that their contribution to human health might be underestimated.
  • Xie, Long; Lehvavirta, Susanna; Valkonen, Jari P. T. (2020)
    Vegetated roofs, often called "green roofs", are popular and necessary in urban greening in densely populated areas. Well-functioning vegetated roofs can provide various ecosystem services to urban residents (e.g., stormwater management, air pollution mitigation, and aesthetic value). Plants essentially determine the actualization of the ecosystem services, thus finding effective ways to establish and maintain the roof plants is important. While greenhouse experiments can be better controlled than field experiments, it is critical to test whether results gained in the greenhouse hold in actual roof conditions. Therefore, we investigated the effects of microbial inoculant, plant species, planting method, and their interactions on plant growth and the beneficial microbes in the roof substrate at the initial establishment of vegetated roofs. The selected plants (i.e., Antennaria dioica, Campanula rotundifolia, Fragaria vesca, Geranium sanguineum, Lotus corniculatus, Thymus serpyllum, Trifolium repens, and Viola tricolor) were established using pre-grown vegetation mats, plug plants, and seeds, each with and without the co-inoculation with Rhizophagus irregularis and Bacillus amyloliquefaciens, two plant growth-promoting microbial species. Eventually, only F. vesca, T. serpyllum, T. repens, and V. tricolor were found successfully settled in either of the three planting methods. Dry aboveground plant biomass was measured to assess the effects of co-inoculation on plant growth. R. irregularis colonization level and B. amyloliquefaciens bacterial density were detected from root and substrate samples, respectively. The results indicated that co-inoculation with R. irregularis and B. amyloliquefaciens successfully colonized target plant species and significantly increased the initial growth of the vegetated roof plants by 18-292%. Additionally, the abundance of R. irregularis was affected by plant species (F. vesca > T. serpyllum > T. repens) and planting methods (seed > plug > mat), while the bacterial density of B. amyloliquefaciens was higher in T. repens roots than the other plant species, and was not affected by planning methods. The results suggest that co-inoculating R. irregularis and B. amyloliquefaciens at the installation phase of vegetated roofs could improve microbial settlement and colonization in the substrate, and consequently achieve synergistic effect on plant growth. The study also provides basis and reference for future vegetated roofs research.
  • Greiser, Caroline; Hylander, Kristoffer; Meineri, Eric; Luoto, Miska; Ehrlen, Johan (2020)
    The role of climate in determining range margins is often studied using species distribution models (SDMs), which are easily applied but have well-known limitations, e.g. due to their correlative nature and colonization and extinction time lags. Transplant experiments can give more direct information on environmental effects, but often cover small spatial and temporal scales. We simultaneously applied a SDM using high-resolution spatial predictors and an integral projection (demographic) model based on a transplant experiment at 58 sites to examine the effects of microclimate, light and soil conditions on the distribution and performance of a forest herb, Lathyrus vernus, at its cold range margin in central Sweden. In the SDM, occurrences were strongly associated with warmer climates. In contrast, only weak effects of climate were detected in the transplant experiment, whereas effects of soil conditions and light dominated. The higher contribution of climate in the SDM is likely a result from its correlation with soil quality, forest type and potentially historic land use, which were unaccounted for in the model. Predicted habitat suitability and population growth rate, yielded by the two approaches, were not correlated across the transplant sites. We argue that the ranking of site habitat suitability is probably more reliable in the transplant experiment than in the SDM because predictors in the former better describe understory conditions, but that ranking might vary among years, e.g. due to differences in climate. Our results suggest that L. vernus is limited by soil and light rather than directly by climate at its northern range edge, where conifers dominate forests and create suboptimal conditions of soil and canopy-penetrating light. A general implication of our study is that to better understand how climate change influences range dynamics, we should not only strive to improve existing approaches but also to use multiple approaches in concert.
  • Hällfors, Maria H.; Vaara, Elina M.; Hyvärinen, Marko; Oksanen, Markku; Schulman, Leif E.; Siipi, Helena; Lehvävirta, Susanna (2014)
    Intentional moving of species threatened by climate change is actively being discussed as a conservation approach. The debate, empirical studies, and policy development, however, are impeded by an inconsistent articulation of the idea. The discrepancy is demonstrated by the varying use of terms, such as assisted migration, assisted colonisation, or managed relocation, and their multiple definitions. Since this conservation approach is novel, and may for instance lead to legislative changes, it is important to aim for terminological consistency. The objective of this study is to analyse the suitability of terms and definitions used when discussing the moving of organisms as a response to climate change. An extensive literature search and review of the material (868 scientific publications) was conducted for finding hitherto used terms (N = 40) and definitions (N = 75), and these were analysed for their suitability. Based on the findings, it is argued that an appropriate term for a conservation approach relating to aiding the movement of organisms harmed by climate change is assisted migration defined as follows: Assisted migration means safeguarding biological diversity through the translocation of representatives of a species or population harmed by climate change to an area outside the indigenous range of that unit where it would be predicted to move as climate changes, were it not for anthropogenic dispersal barriers or lack of time. The differences between assisted migration and other conservation translocations are also discussed. A wide adoption of the clear and distinctive term and definition provided would allow more focused research on the topic and enable consistent implementation as practitioners could have the same understanding of the concept.
  • Siqueira, Tadeu; Saito, Victor S.; Bini, Luis M.; Melo, Adriano S.; Petsch, Danielle K.; Landeiro, Victor L.; Tolonen, Kimmo T.; Jyrkänkallio-Mikkola, Jenny; Soininen, Janne; Heino, Jani (2020)
    Ecological drift can override the effects of deterministic niche selection on small populations and drive the assembly of some ecological communities. We tested this hypothesis with a unique data set sampled identically in 200 streams in two regions (tropical Brazil and boreal Finland) that differ in macroinvertebrate community size by fivefold. Null models allowed us to estimate the magnitude to which beta-diversity deviates from the expectation under a random assembly process while taking differences in richness and relative abundance into account, i.e., beta-deviation. We found that both abundance- and incidence-based beta-diversity was negatively related to community size only in Brazil. Also, beta-diversity of small tropical communities was closer to stochastic expectations compared with beta-diversity of large communities. We suggest that ecological drift may drive variation in some small communities by changing the expected outcome of niche selection, increasing the chances of species with low abundance and narrow distribution to occur in some communities. Habitat destruction, overexploitation, pollution, and reductions in connectivity have been reducing the size of biological communities. These environmental pressures might make smaller communities more vulnerable to novel conditions and render community dynamics more unpredictable. Incorporation of community size into ecological models should provide conceptual and applied insights into a better understanding of the processes driving biodiversity.
  • Wang, Kai; Wu, Ying; Ye, Mengyuan; Yang, Yifan; Asiegbu, Fred O.; Overmyer, Kirk; Liu, Shenkui; Cui, Fuqiang (2021)
    Plant-beneficial microbes have drawn wide attention due to their potential application as bio-control agents and bio-fertilizers. Moso bamboo, which is among the monocots with the highest growth rate, lives perennially with abundant microbes that may benefit annually growing crops. Genome information of moso bamboo associated bacteria remains underexplored. We isolated and identified a novel Paraburkholderia strain Suichang626 from moso bamboo roots. Growth promoting effects of Suichang626 on both moso bamboo and seedlings of the model dicot Arabidopsis thaliana were documented in laboratory conditions. To gain insight into the genetic basis of this growth promotion effect, we sequenced the genome of Suichang626. Evidenced by genome-wide phylogeny data, we propose that Suichang626 is a novel strain of Paraburkholderia sacchari. Gene homologs encoding biosynthesis of the plant growth-promoting chemicals, acetoin and 2,3-butanediol, were identified in the genome of Suichang626. Comparative genomics was further performed with plant-beneficial and plant/animal pathogenic species of Paraburkholderia and Burkholderia. Genes related to volatile organic compounds, nitrogen fixation, and auxin biosynthesis were discovered specifically in the plant growth-promoting species of both genera.
  • Hagge, Jonas; Abrego, Nerea; Baessler, Claus; Bouget, Christophe; Brin, Antoine; Brustel, Herve; Christensen, Morten; Gossner, Martin M.; Heilmann-Clausen, Jacob; Horak, Akub; Gruppe, Axel; Isacsson, Gunnar; Koehler, Frank; Lachat, Thibault; Larrieu, Laurent; Schlaghamersky, Jiri; Thorn, Simon; Zapponi, Livia; Mueller, Joerg (2019)
    Aim: Beech forests comprise a globally unique temperate forest type in Europe. The dominance of beech in these forests developed during the ongoing post-glacial northward re-colonization, concurrently with intensified forest use by humans. We investigated how these two processes together with climate shaped the patterns of functional diversity of two major species groups involved in wood decomposition and whether functional diversity is determined on the local or regional species pool level. Location: European beech forest distribution range. Taxon: Saproxylic beetles and fungi. Methods: We analysed records of 532,496 saproxylic beetles of 788 species and 8,630 records of 234 saproxylic fungal species based on sets of traits similar to both groups. We tested how space, climate and landscape composition affect trait-based functional diversity on local and regional scales. Using structural equation modelling, we tested whether functional diversity is shaped on the local or regional scale. Results: The response of local functional diversity of both saproxylic beetles and fungi followed a highly congruent pattern of decreasing functional diversity towards the north, with higher elevation and accounted for overall geographical gradients with higher temperature, while increasing with higher precipitation. Structural equation modelling revealed that local functional diversity is determined by community changes operating on the level of the regional species pool. Main conclusions: Our findings suggest that the functional diversity patterns of saproxylic organisms in European beech forests are mainly determined on the regional scale and driven by anthropogenic and biogeographical processes. To conserve the variation and hotspots of functional diversity in beech forests, activities have to focus on a broad spatial and climatic range of sites throughout Europe, including the primeval forests in the east, as started by the UNESCO World Heritage selection of "Ancient and Primeval Beech Forests of the Carpathians and Other Regions of Europe".
  • Sheppard, Samuel K.; Cheng, Lu; Meric, Guillaume; De Haan, Caroline P. A.; Llarena, Ann-Katrin; Marttinen, Pekka; Vidal, Ana; Ridley, Anne; Clifton-Hadley, Felicity; Connor, Thomas R.; Strachan, Norval J. C.; Forbes, Ken; Colles, Frances M.; Jolley, Keith A.; Bentley, Stephen D.; Maiden, Martin C. J.; Hänninen, Marja-Liisa; Parkhill, Julian; Hanage, William P.; Corander, Jukka (2014)
  • Kantele, Anu; Lääveri, Tinja; Mero, Sointu; Häkkinen, Inka M. K.; Kirveskari, Juha; Johnston, Brian D.; Johnson, James R. (2020)
    Background. One-third of the 100 million travelers to the tropics annually acquire extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-PE), with undefined clinical consequences. Methods. Symptoms suggesting Enterobacteriaceae infections were recorded prospectively among 430 Finnish travelers, 90 (21%) of whom acquired ESBL-PE abroad. ESBL-PE isolates underwent polymerase chain reaction-based detection of diarrheagenic Escherichia coli (DEC) pathotypes (enteroaggregative E. coli [EAEC], enteropathogenic E. coli [EPEC], enterotoxigenic E. coli [ETEC], enteroinvasive E. coli, and Shiga toxin-producing E. coli), and extraintestinal pathogenic/uropathogenic E. coli (ExPEC/UPEC). Laboratory-confirmed ESBL-PE infections were surveyed 5 years before and after travel. Results. Among the 90 ESBL-PE carriers, manifestations of Enterobacteriaceae infection included travelers' diarrhea (TD) (75/90 subjects) and urinary tract infection (UTI) (3/90). The carriers had 96 ESBL-producing E. coli isolates, 51% exhibiting a molecular pathotype: 13 (14%) were DEC (10 EAEC, 2 EPEC, 1 ETEC) (12 associated with TD) and 39 (41%) ExPEC/UPEC (none associated with UTI). Of ESBL-PE, 3 (3%) were ExPEC/UPEC-EAEC hybrids (2 associated with diarrhea, none with UTI). Potential ESBL-PE infections were detected in 15 of 90 subjects (17%). The 10-year medical record survey identified 4 laboratory-confirmed ESBL-PE infections among the 430 travelers, all in subjects who screened ESBL-PE negative after returning home from their index journeys but had traveled abroad before their infection episodes. Conclusions. Half of all travel-acquired ESBL-producing E. coli strains qualified molecularly as pathogens. Extraintestinal and uropathogenic pathotypes outnumbered enteric pathotypes (41% vs 14%), yet the latter correlated more closely with symptomatic infection (0% vs 92%). Despite more ESBL-PE strains qualifying as ExPEC/UPEC than DEC, travel-acquired ESBL-PE are more often associated with TD than UTI.
  • Zöldi, Viktor; Sane, Jussi; Kantele, Anu; Rimhanen-Finne, Ruska; Salmenlinna, Saara; Lyytikäinen, Outi (2018)
    Background: Overnight international travels made by Finns more than doubled during 1995-2015. To estimate risks and observe trends of travel-related notifiable sexually transmitted and food- and water-borne infections (STIs and FWIs) among travellers, we analysed national reports of gonorrhoea, syphilis, hepatitis A, shigellosis, campylobacteriosis and salmonellosis cases and related them to travel statistics. Method: Cases notified as travel-related to the Finnish infectious diseases register were used as numerators and overnight stays of Statistics Finland surveys as denominator. We calculated overall risks (per 100,000 travellers) and assessed trends (using regression model) in various geographic regions. Results: Of all travel-related cases during 1995-2015, 2304 were STIs and 70,929 FWIs. During 2012-2015, Asia-Oceania showed highest risk estimates for gonorrhoea (11.0; 95%CI, 9.5-13), syphilis (1.4; 0.93-2.1), salmonellosis (157; 151-164), and campylobacteriosis (135; 129-141), and Africa for hepatitis A (4.5; 2.5-7.9), and shigellosis (35; 28-43). When evaluating at country level, the highest risks of infections was found in Thailand, except for hepatitis A ranking Hungary the first. During 2000-2011, significantly decreasing trends occurred for most FWIs particularly in the European regions and for STIs in Russia-Baltics. Conclusions: Our findings can be used in targeting pre-travel advice, which should also cover those visiting Thailand or European hepatitis A risk areas.
  • Jian, Ching; Carpén, Noora K; Helve, Otto; Vos de, Willem Meindert; Korpela, Katri; Salonen, Anne (2021)
    The colonisation and development of the gut microbiota has been implicated in paediatric metabolic disorders via its powerful effect on host metabolic and immune homeostasis. Here we summarise the evidence from human studies on the early gut microbiota and paediatric overweight and obesity. Manipulation of the early gut microbiota may represent a promising target for countering the burgeoning metabolic disorders in the paediatric population, provided the assembly patterns of microbiota and their health consequences can be decoded. Therefore, in this review, we pay particular attention to the important ecological drivers affecting the community dynamics of the early gut microbiota. We then discuss the knowledge gaps in commonly studied exposures linking the gut microbiota to metabolic disorders, especially regarding maternal factors and antibiotic use. This review also attempts to give directions for future studies aiming to identify predictive and corrective measures for paediatric metabolic disorders based on the gut microbiota.
  • Cairns, Johannes; Jousset, Alexandre; Becks, Lutz; Hiltunen, Teppo (2022)
    Mutation supply can influence evolutionary and thereby ecological dynamics in important ways which have received little attention. Mutation supply influences features of population genetics, such as the pool of adaptive mutations, evolutionary pathways and importance of processes, such as clonal interference. The resultant trait evolutionary dynamics, in turn, can alter population size and species interactions. However, controlled experiments testing for the importance of mutation supply on rapid adaptation and thereby population and community dynamics have primarily been restricted to the first of these aspects. To close this knowledge gap, we performed a serial passage experiment with wild-type Pseudomonas fluorescens and a mutant with reduced mutation rate. Bacteria were grown at two resource levels in combination with the presence of a ciliate predator. A higher mutation supply enabled faster adaptation to the low-resource environment and anti-predatory defence. This was associated with higher population size at the ecological level and better access to high-recurrence mutational targets at the genomic level with higher mutation supply. In contrast, mutation rate did not affect growth under high-resource level. Our results demonstrate that intrinsic mutation rate influences population dynamics and trait evolution particularly when population size is constrained by extrinsic conditions.
  • Xie, Long; Timonen, Sari; Gange, Alan; Kuoppamäki, Kirsi; Hagner, Marleena; Lehvävirta, Susanna (2022)
    Background Vegetated building envelopes (VBEs), such as vegetated roofs and facades, are becoming more frequent in urban planning nowadays. However, harsh growing conditions restrain the application of VBEs. Plant growth-promoting microbes (PGPMs) might help ease the stresses, but first, it is necessary to investigate how to ensure their survival and growth under VBE conditions. Methods We conducted three experiments to test the impact of various factors on the microbial populations of inoculated PGPMs in VBEs, a mycorrhizal fungus Rhizophagus irregularis and a bacterium Bacillus amyloliquefaciens. The first experiment was conducted by inoculating the two PGPMs separately in Sedum roof plots, and the microbial populations associated with Poa alpina was monitored for two consecutive years under local weather conditions. The second experiment was conducted in a laboratory testing the effect of substrate pH (substrates collected from balcony gardens) on R. irregularis population associated with Trifolium repens and Viola tricolor. The third experiment was conducted on a meadow roof testing the effect of biochar amendment on R. irregularis population associated with Thymus serpyllum and Fragaria vesca. Results In the first experiment, Bacillus was found to associate with P. alpina, but Rhizophagus wasn't. Yet, the fungus induced high Bacillus population density in the Rhizophagus treated plots in the first year. In the second experiment, Rhizophagus abundance in T. repens was higher in the neutral substrate (6–6.5), while V. tricolor was more colonized in acidic substrate (5–5.5), suggesting an important interactive effect of substrate pH and plant species on Rhizophagus abundance. The third experiment suggested a negligible impact of biochar amendment on Rhizophagus abundance for both host plants. Conclusion Three experiments demonstrate that PGPM inoculation on VBEs is feasible, and various factors and interactions affect the PGPM populations. This paper provides reference and inspiration for other VBE research involving substrate microbial manipulation.