Sort by: Order: Results:

Now showing items 1-17 of 17
  • Tiwari, Ananda; Hokajärvi, Anna Maria; Domingo, Jorge Santo; Elk, Michael; Jayaprakash, Balamuralikrishna; Ryu, Hodon; Siponen, Sallamaari; Vepsäläinen, Asko; Kauppinen, Ari; Puurunen, Osmo; Artimo, Aki; Perkola, Noora; Huttula, Timo; Miettinen, Ilkka T.; Pitkänen, Tarja (2021)
    Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics -from the source of contamination, through the watershed to the DW production process-may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemaenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p <0.001, ANOSIM). The species richness and evenness indices were highest in surface water (Chao1; 920 +/- 10) among sample groups and gradually decreased during the DW treatment process (DW production well; Chao1: 320 +/- 20). Although the phylum Proteobacteria was omnipresent, its relative abundance was higher in sewage and industrial effluents (66-80%) than in surface water (55%). Phyla Firmicutes and Fusobacteria were only detected in sewage samples. Actinobacteria was more abundant in the surface water (>= 13%) than in other groups (= 13%) than in others (
  • Tiainen, Juha; Hyvönen, Terho; Hagner, Marleena; Huusela-Veistola, Erja; Louhi, Pauliina; Miettinen, Antti; Nieminen, Tiina M.; Palojärvi, Ansa; Seimola, Tuomas; Taimisto, Pauliina; Virkajärvi, Perttu (2020)
    Biodiversity degradation is a national and global problem which is interconnected with land use and climate change. All these are major unsolved questions and their interactions are only partly understood. Agriculture and especially cattle farming is under keen societal focus because of its significant role in soil carbon losses, greenhouse gas (GHG) emissions and biodiversity preservation. We reviewed the Finnish scientific literature to assess the impact of intensive contra extensive grass production on biodiversity using vascular plants, vertebrates, invertebrates and soil biota. Still a few decades ago, mixed farming was prevailing almost everywhere in Finland, but nowadays cereal production is essentially clustered in the southwest and milk and beef production in the northeast. This is reflected in the distribution of intensive (connected with cattle) and extensive grasslands (both types of farming). The bird community was most abundant and species rich in farmland which provides small fields in large blocks of farmland and many kinds of crops, including both intensive and extensive grasslands. Overall permanent grasslands with rather simply vegetation diversity can maintain a diverse community of spiders and leafhoppers, and act as overwintering habitat for polyphagous predators in field ecosystems. The ecological requirement of all species and species groups are probably never met at one site and consequently target should be in having differently managed areas at regional scale. For some of the taxa, ecosystem services could be indicated, but a research-based quantitative assessment is available only for carbon sequestration and weak impact of dung-beetles in diminishing GHG emissions from cow pats. Our review demonstrated that quite much is known about biodiversity in extensively managed grasslands, but very little in intensively managed grasslands. An important question is whether there is some threshold for the proportion of grasslands under which regional biodiversity will be reduced. Intensive production offers limited value to replace the high biodiversity value of semi-natural pastures.
  • Pakarinen, Aku; Fritze, Hannu; Timonen, Sari; Kivijarvi, Pirjo; Velmala, Sannakajsa (2021)
    Arbuscular mycorrhizal fungi (AMF) enhance plant phosphorus uptake, increase soil water holding abilities, reduce soil erosion and can protect their hosts from soil-borne pathogens. Hence, AMF play an important part in improving sustainable agricultural practices, and information about the effects of different preceding crop species on the following crop's AMF well-being is crucial for designing crop rotations. We studied onion root and soil microbial diversity and onion root AMF colonization rates after being preceded by three AMF hosting and one non-hosting green manure crop species in a boreal climate organic field. One-season cultivation of different preceding green manure crops did not have a strong effect on AMF colonization or microbial diversity in onion roots nor in the surrounding soil. Onions had high AMF colonization and microbial diversity after all four preceding crops. The overall fungal and bacterial populations of the soil reacted more strongly to seasonal variations than preceding crops. The study suggests that one season is a too short time to influence the AMF community in boreal climate organic fields with conventional tillage. Thus, non-host preceding crops can also be used in rotations, especially together with AMF host crops.
  • Xia, Zhichao; Yu, Lei; He, Yue; Korpelainen, Helena; Li, Chunyang (2019)
    Tree performance in mixed-species forest plantations is ultimately the net result of positive and negative interactions among species. Despite increasing knowledge of interspecific interactions, relatively little is known about the chemical mechanisms mediating such interactions. We constructed mixed planting systems with two species including Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) and broadleaf species Cinnamomum camphora L. Presl, Elaeocarpus decipiens Hemsl, Liquidambar formosana Hance, or Michelia macclurei Dandy. Based on a series of manipulative experiments, we investigated the performance of Chinese fir and analyzed root placement patterns and the composition of main soil microbial groups. The broadleaf trees influenced the growth of Chinese fir roots more than the growth of shoots. Furthermore, C. camphora roots released allelochemicals into the soil environment, resulting in growth inhibition of Chinese fir and changes in main soil microbial groups. However, when grown with E. decipiens and M. macclurei, the growth of Chinese fir was consistently promoted. It responded by enhancing its root growth and altering root behavior, resulting in a shift from growth inhibition to chemical facilitation. These positive inter-specific interactions also stimulated changes in the composition of soil microbes. Complementary experiments indicated that non-toxic signaling molecules in the root exudates of E. decipiens and M. macclurei may be responsible for mediating positive root-root interactions and regulating the composition of main soil microbial groups. Thus, our study demonstrated that broadleaf species chemically mediate the growth of Chinese fir through root exudates. Such a novel mechanism offers many implications and applications for reforestation programs undertaken to rehabilitate forest plantations that suffer from declining productivity related to densely planted monocultures.
  • Lehikoinen, Aleksi; Brotons, Lluis; Calladine, John; Campedelli, Tommaso; Escandell, Virginia; Flousek, Jiri; Grueneberg, Christoph; Haas, Fredrik; Harris, Sarah; Herrando, Sergi; Husby, Magne; Jiguet, Frederic; Kalas, John Atle; Lindstrom, Ake; Lorrilliere, Romain; Molina, Blas; Pladevall, Clara; Calvi, Gianpiero; Sattler, Thomas; Schmid, Hans; Sirkiä, Päivi M.; Teufelbauer, Norbert; Trautmann, Sven (2019)
    Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountaintops. Population shifts towards poles and mountaintops have been documented in several areas, indicating that climate change is one of the key drivers of species' distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe, we can here report a first account of population trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south-western (Iberia) and south-central mountains (Alps), covering 12 countries. Overall, the mountain bird species declined significantly (-7%) during 2002-2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant -10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in United Kingdom and Alps, trends were nonsignificant. Temperature change or migratory behaviour was not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change, and this is certainly one of the main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.
  • Maria Ariza, Gloria; Jacome, Jorge; Eduardo Esquivel, Hector; Kotze, Johan D. (2021)
    Little is known about the successional dynamics of insects in the highly threatened tropical dry forest (TDF) ecosystem. For the first time, we studied the response of carabid beetles to vegetal succession and seasonality in this ecosystem in Colombia. Carabid beetles were collected from three TDF habitat types in two regions in Colombia: initial successional state (pasture), early succession, and intermediate succession (forest). The surveys were performed monthly for 13 months in one of the regions (Armero) and during two months, one in the dry and one in the wet season, in the other region (Cambao). A set of environmen-tal variables were recorded per month at each site. Twenty-four carabid beetle species were collected during the study. Calosoma alternans and Megacephala affinis were the most abundant species, while most species were of low abundance. Forest and pasture beetle assemblages were distinct, while the early succession assemblage overlapped with these assemblages. Canopy cover, litter depth, and soil and air temperatures were important in structuring the assemblages. Even though seasonality did not affect the carabid beetle assemblage, individual species responded positively to the wet season. It is shown that early successional areas in TDF could potentially act as habitat corridors for species to recolonize forest areas, since these successional areas host a number of species that inhabit forests and pastures. Climatic variation, like the El Nino episode during this study, appears to affect the carabid beetle assemblage negatively, exasperating concerns of this already threatened tropical ecosystem.
  • Happel, Elisabeth M.; Trine, Markussen; Teikari, Jonna E.; Huchaiah, Vimala; Alneberg, Johannes; Andersson, Andres F.; Sivonen, Kaarina; Middelboe, Matthias; Kisand, Veljo; Riemann, Lasse (2019)
    Heterotrophic bacteria are important drivers of nitrogen (N) cycling and the processing of dissolved organic matter (DOM). Projected increases in precipitation will potentially cause increased loads of riverine DOM to the Baltic Sea and likely affect the composition and function of bacterioplankton communities. To investigate this, the effects of riverine DOM from two different catchment areas (agricultural and forest) on natural bacterioplankton assemblages from two contrasting sites in the Baltic Sea were examined. Two microcosm experiments were carried out, where the community composition (16S rRNA gene sequencing), the composition of a suite of N-cycling genes (metagenomics) and the abundance and transcription of ammonia monooxygenase (amoA) genes involved in nitrification (quantitative PCR) were investigated. The river water treatments evoked a significant response in bacterial growth, but the effects on overall community composition and the representation of N-cycling genes were limited. Instead, treatment effects were reflected in the prevalence of specific taxonomic families, specific N-related functions and in the transcription of amoA genes. The study suggests that bacterioplankton responses to changes in the DOM pool are constrained to part of the bacterial community, whereas most taxa remain relatively unaffected.
  • Abrego, Nerea; Norros, Veera; Halme, Panu; Somervuo, Panu; Ali-Kovero, Heini; Ovaskainen, Otso (2018)
    Fungi are a megadiverse group of organisms, they play major roles in ecosystem functioning and are important for human health, food production and nature conservation. Our knowledge on fungal diversity and fungal ecology is however still very limited, in part because surveying and identifying fungi is time demanding and requires expert knowledge. We present a method that allows anyone to generate a list of fungal species likely to occur in a region of interest, with minimal effort and without requiring taxonomical expertise. The method consists of using a cyclone sampler to acquire fungal spores directly from the air to an Eppendorf tube, and applying DNA barcoding with probabilistic species identification to generate a list of species from the sample. We tested the feasibility of the method by acquiring replicate air samples from different geographical regions within Finland. Our results show that air sampling is adequate for regional-level surveys, with samples collected >100km apart varying but samples collected
  • Abrego, Nerea; Huotari, Tea; Tack, Ayco J.M; Lindahl, Bjorn D.; Tikhonov, Gleb; Somervuo, Panu Juhani; Schmidt, Niels Martin; Ovaskainen, Otso; Roslin, Tomas (2020)
    How community-level specialization differs among groups of organisms, and changes along environmental gradients, is fundamental to understanding the mechanisms influencing ecological communities. In this paper, we investigate the specialization of root-associated fungi for plant species, asking whether the level of specialization varies with elevation. For this, we applied DNA barcoding based on the ITS region to root samples of five plant species equivalently sampled along an elevational gradient at a high arctic site. To assess whether the level of specialization changed with elevation and whether the observed patterns varied between mycorrhizal and endophytic fungi, we applied a joint species distribution modeling approach. Our results show that host plant specialization is not environmentally constrained in arctic root-associated fungal communities, since there was no evidence for changing specialization with elevation, even if the composition of root-associated fungal communities changed substantially. However, the level of specialization for particular plant species differed among fungal groups, root-associated endophytic fungal communities being highly specialized on particular host species, and mycorrhizal fungi showing almost no signs of specialization. Our results suggest that plant identity affects associated mycorrhizal and endophytic fungi differently, highlighting the need of considering both endophytic and mycorrhizal fungi when studying specialization in root-associated fungal communities.
  • Rowe, Owen F.; Dinasquet, Julie; Paczkowska, Joanna; Figueroa, Daniela; Riemann, Lasse; Andersson, Agneta (2018)
    Dissolved organic matter (DOM) in marine waters is a complex mixture of compounds and elements that contribute substantially to the global carbon cycle. The large reservoir of dissolved organic carbon (DOC) represents a vital resource for heterotrophic bacteria. Bacteria can utilise, produce, recycle and transform components of the DOM pool, and the physicochemical characteristics of this pool can directly influence bacterial activity; with consequences for nutrient cycling and primary productivity. In the present study we explored bacterial transformation of naturally occurring DOM across an extensive brackish water gradient in the Baltic Sea. Highest DOC utilisation (indicated by decreased DOC concentration) was recorded in the more saline southerly region where waters are characterised by more autochthonous DOM. These sites expressed the lowest bacterial growth efficiency (BGE), whereas in northerly regions, characterised by higher terrestrial and allochthonous DOM, the DOC utilisation was low and BGE was highest. Bacterial processing of the DOM pool in the south resulted in larger molecular weight compounds and compounds associated with secondary terrestrial humic matter being degraded, and a processed DOM pool that was more aromatic in nature and contributed more strongly to water colour; while the opposite was true in the north. Nutrient concentration and stoichiometry and DOM characteristics affected bacterial activity, including metabolic status (BGE), which influenced DOM transformations. Our study highlights dramatic differences in DOM characteristics and microbial carbon cycling in sub-basins of the Baltic Sea. These findings are critical for our understanding of carbon and nutrient biogeochemistry, particularly in light of climate change scenarios.
  • Kohl, Lukas; Myers-Pigg, Allison; Edwards, Kate A.; Billings, Sharon A.; Warren, Jamie; Podrebarac, Frances; Ziegler, Susan E. (2021)
    Plant litter chemistry is altered during decomposition but it remains unknown if these alterations, and thus the composition of residual litter, will change in response to climate. Selective microbial mineralization of litter components and the accumulation of microbial necromass can drive litter compositional change, but the extent to which these mechanisms respond to climate remains poorly understood. We addressed this knowledge gap by studying needle litter decomposition along a boreal forest climate transect. Specifically, we investigated how the composition and/or metabolism of the decomposer community varies with climate, and if that variation is associated with distinct modifications of litter chemistry during decomposition. We analyzed the composition of microbial phospholipid fatty acids (PLFA) in the litter layer and measured natural abundance δ13C-PLFA values as an integrated measure of microbial metabolisms. Changes in litter chemistry and δ13C values were measured in litterbag experiments conducted at each transect site. A warmer climate was associated with higher litter nitrogen concentrations as well as altered microbial community structure (lower fungi:bacteria ratios) and microbial metabolism (higher δ13C-PLFA). Litter in warmer transect regions accumulated less aliphatic-C (lipids, waxes) and retained more O-alkyl-C (carbohydrates), consistent with enhanced 13C-enrichment in residual litter, than in colder regions. These results suggest that chemical changes during litter decomposition will change with climate, driven primarily by indirect climate effects (e.g. greater nitrogen availability and decreased fungi:bacteria ratios) rather than direct temperature effects. A positive correlation between microbial biomass δ13C values and 13C-enrichment during decomposition suggests that change in litter chemistry is driven more by distinct microbial necromass inputs than differences in the selective removal of litter components. Our study highlights the role that microbial inputs during early litter decomposition can play in shaping surface litter contribution to soil organic matter as it responds to climate warming effects such as greater nitrogen availability.
  • Laine, A. M.; Selänpää, T.; Oksanen, J.; Sevakivi, M.; Tuittila, E-S (2018)
    During succession, plant species composition undergoes changes that may have implications for ecosystem functions. Here we aimed to study changes in plant species diversity, functional diversity and functional traits associated with mire development. We sampled vegetation from 22 mires on the eastern shore of the Gulf of Bothnia (west coast of Finland) that together represent seven different time steps along a mire chronosequence resulting from post-glacial rebound. This chronosequence spans a time period of almost 2500 years. Information about 15 traits of vascular plants and 17 traits of mosses was collected, mainly from two different databases. In addition to species richness and Shannon diversity index, we measured functional diversity and community weighted means of functional traits. We found that plant species diversity increased from the early succession stages towards the fen-bog transition. The latter stage also has the most diverse surface structure, consisting of pools and hummocks. Functional diversity increased linearly with species richness, suggesting a lack of functional redundancy during mire succession. On the other hand, Rao's quadratic entropy, another index of functional diversity, remained rather constant throughout the succession. The changes in functional traits indicate a trade-off between acquisitive and conservative strategies. The functional redundancy, i.e. the lack of overlap between similarly functioning species, may indicate that the resistance to environmental disturbances such as drainage or climate change does not change during mire succession. However, the trait trade-off towards conservative strategy, together with the developing microtopography of hummocks and hollows with strongly differing vegetation composition, could increase resistance during mire succession.
  • Paczkowska, Joanna; Brugel, Sonia; Rowe, Owen; Lefebure, Robert; Brutemark, Andreas; Andersson, Agneta (2020)
    Climate change scenarios project that precipitation will increase in northern Europe, causing amplified inflows of terrestrial matter (tM) and inorganic nutrients to coastal areas. How this will affect the plankton community is poorly understood. A mesocosm experiment was carried out to investigate the influence of two levels of tM inputs on the composition, size-structure and productivity of a natural coastal phytoplankton community from the northern Baltic Sea. The tM addition caused browning of the water and decreased underwater light levels, while the concentrations of dissolved organic carbon (DOC) and inorganic nutrients increased. Microphytoplankton were promoted by tM addition, while in the controls picophytoplankton dominated the phytoplankton community. Inorganic nutrient availability was instrumental in defining the phytoplankton community composition and size-structure. As a response to tM addition, the phytoplankton increased their chlorophyll a content. This physiological adaptation helped to maintain high primary production rates at the low tM enrichment, but at the high tM load the primary production decreased as did the biomass of mesozooplankton. The ciliate biomass was high when the mesozooplankton biomass was low, indicating that a trophic cascade occurred in the system. Structural equation modeling showed that tM borne DOC promoted ciliates, while primary and bacterial production were disfavored. Thus, DOC originating from soils had an indirect negative effect on the mesozooplankton by reducing their food availability. Although, a positive correlation between heterotrophic bacteria and phytoplankton suggested coupling between phytoplankton produced carbon and heterotrophs growth. The results from our study indicate that river-borne DOC and inorganic nutrients have a large impact on the phytoplankton community, driving the system to the dominance of large diatoms. However, since river-borne humic substances cause browning of the water, phytoplankton increase their light harvesting pigments. At moderate inflow this helps to support the primary production, but at high inflows of terrestrial material the primary production will decrease. As high river inflows have been projected to be a consequence of climate change, we foresee that primary production will decrease in coastal areas in the future, and the impacts of such changes on the food web could be significant.
  • Ferreira, Diogo F.; Rocha, Ricardo; Lopez-Baucells, Adria; Farneda, Fabio Z.; Carreiras, Joao M. B.; Palmeirim, Jorge M.; Meyer, Christoph F. J. (2017)
    Seasonality causes fluctuations in resource availability, affecting the presence and abundance of animal species. The impacts of these oscillations on wildlife populations can be exacerbated by habitat fragmentation. We assessed differences in bat species abundance between the wet and dry season in a fragmented landscape in the Central Amazon characterized by primary forest fragments embedded in a secondary forest matrix. We also evaluated whether the relative importance of local vegetation structure versus landscape characteristics (composition and configuration) in shaping bat abundance patterns varied between seasons. Our working hypotheses were that abundance responses are species as well as season specific, and that in the wet season, local vegetation structure is a stronger determinant of bat abundance than landscape-scale attributes. Generalized linear mixed-effects models in combination with hierarchical partitioning revealed that relationships between species abundances and local vegetation structure and landscape characteristics were both season specific and scale dependent. Overall, landscape characteristics were more important than local vegetation characteristics, suggesting that landscape structure is likely to play an even more important role in landscapes with higher fragment-matrix contrast. Responses varied between frugivores and animalivores. In the dry season, frugivores responded more to compositional metrics, whereas during the wet season, local and configurational metrics were more important. Animalivores showed similar patterns in both seasons, responding to the same group of metrics in both seasons. Differences in responses likely reflect seasonal differences in the phenology of flowering and fruiting between primary and secondary forests, which affected the foraging behavior and habitat use of bats. Management actions should encompass multiscale approaches to account for the idiosyncratic responses of species to seasonal variation in resource abundance and consequently to local and landscape scale attributes.
  • Vetterli, Adrien; Hietanen, Susanna; Leskinen, Elina (2016)
    The diversity and dynamics of ammonia-oxidizing bacteria (AOB) and archaea (AOA) nitrifying communities in the sediments of the eutrophic Gulf of Finland (GoF) were investigated. Using clone libraries of ammonia monooxygenase (amoA) gene fragments and terminal restriction fragment length polymorphism (TRFLP), we found a low richness of both AOB and AOA. The AOB amoA phylogeny matched that of AOB 16S ribosomal genes from the same samples. AOA communities were characterized by strong spatial variation while AOB communities showed notable temporal patterns. At open sea sites, where transient anoxic conditions prevail, richness of both AOA and AOB was lowest and communities were dominated by organisms with gene signatures unique to the GoF. Given the importance of nitrification as a link between the fixation of nitrogen and its removal from aquatic environments, the low diversity of ammonia-oxidizing microbes across the GoF could be of relevance for ecosystem resilience in the face of rapid global environmental changes. (C) 2015 Elsevier Ltd. All rights reserved.
  • Zhou, Xuan; Sun, Hui; Pumpanen, Jukka; Sietiö, Outi-Maaria; Heinonsalo, Jussi; Köster, Kajar; Berninger, Frank (2019)
    Wildfires thaw near-surface permafrost soils in the boreal forest, making previously frozen organic matter available to microbes. The short-term microbial stoichiometric dynamics following a wildfire are critical to understanding the soil element variations in thawing permafrost. Thus, we selected a boreal wildfire chronosequence in a region of continuous permafrost, where the last wildfire occurred 3, 25, 46, and > 100 years ago (set as the control) to explore the impact of wildfire on the soil chemistry, soil microbial stoichiometry, and the fungal-to-bacterial gene ratio (F:B ratio). We observed the microbial biomass C:N:P ratio remained constant in distinct age classes indicating that microbes are homeostatic in relation to stoichiometric ratios. The microbial C:N ratios were independent of the shifts in the fungal-to-bacterial ratio when C:N exceeded 12. Wildfire-induced reduction in vegetation biomass positively affected the fungal, but not the bacterial, gene copy number. The decline in microbial biomass C, N, and P following a fire, primarily resulted from a lack of soil available C and nutrients. Wildfire affected neither the microbial biomass nor the F:B ratios at a soil depth of 30 cm. We conclude that microbial stoichiometry does not always respond to changes in the fungal-to-bacterial ratio and that wildfire-induced permafrost thawing does not accelerate microbial respiration.
  • Nutrient Network; Aakala, Tuomas; Makela, Annikki (2020)
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.