Browsing by Subject "COMMUNITY ECOLOGY"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Raerinne, Jani (2018)
    In addition to their core explanatory and predictive assumptions, scientific models include simplifying assumptions, which function as idealizations, approximations, and abstractions. There are methods to investigate whether simplifying assumptions bias the results of models, such as robustness analyses. However, the equally important issue - the focus of this paper - has received less attention, namely, what are the methodological and epistemic strengths and limitations associated with different simplifying assumptions. I concentrate on one type of simplifying assumption, the use of mega parameters as abstractions in ecological models. First, I argue that there are two kinds of mega parameters qua abstractions, sufficient parameters and aggregative parameters, which have gone unnoticed in the literature. The two are associated with different heuristics, holism and reductionism, which many view as incompatible. Second, I will provide a different analysis of abstractions and the associated heuristics than previous authors. Reductionism and holism and the accompanying abstractions have different methodological and epistemic functions, strengths, and limitations, and the heuristics should be viewed as providing complementary research perspectives of cognitively limited beings. This is then, third, used as a premise to argue for epistemic and methodological pluralism in theoretical ecology. Finally, the presented taxonomy of abstractions is used to comment on the current debate whether mechanistic accounts of explanation are compatible with the use of abstractions. This debate has suffered from an abstract discussion of abstractions. With a better taxonomy of abstractions the debate can be resolved.
  • Langenheder, Silke; Wang, Jianjun; Karjalainen, Satu Maaria; Laamanen, Tiina M.; Tolonen, Kimmo T.; Vilmi, Annika; Heino, Jani (2017)
    The spatial structure and underlying assembly mechanisms of bacterial communities have been studied widely across aquatic systems, focusing primarily on isolated sites, such as different lakes, ponds and streams. Here, our main aim was to determine the underlying mechanisms for bacterial biofilm assembly within a large, highly connected lake system in Northern Finland using associative methods based on taxonomic and phylogenetic alpha-and beta-diversity and a large number of abiotic and biotic variables. Furthermore, null model approaches were used to quantify the relative importance of different community assembly processes. We found that spatial variation in bacterial communities within the lake was structured by different assembly processes, including stochasticity, species sorting and potentially even dispersal limitation. Species sorting by abiotic environmental conditions explained more of the taxonomic and particularly phylogenetic turnover in community composition compared with that by biotic variables. Finally, we observed clear differences in alpha diversity (species richness and phylogenetic diversity), which were to a stronger extent determined by abiotic compared with biotic factors, but also by dispersal effects. In summary, our study shows that the biodiversity of bacterial biofilm communities within a lake ecosystem is driven by within-habitat gradients in abiotic conditions and by stochastic and deterministic dispersal processes.
  • Rigal, Francois; Cardoso, Pedro; Lobo, Jorge M.; Triantis, Kostas A.; Whittaker, Robert J.; Amorim, Isabel R.; Borges, Paulo A. V. (2018)
    Aim: Land-use change typically goes hand in hand with the introduction of exotic-species, which mingle with indigenous species to form novel assemblages. Here, we compare the functional structure of indigenous and exotic elements of ground-dwelling arthropod assemblages across four land-uses of varying management intensity. Location: Terceira Island (Azores, North Atlantic). Methods: We used pitfall traps to sample arthropods in 36 sites across the four land-uses and collated traits related to dispersal ability, body size and resource use. For both indigenous and exotic species, we examined the impact of land-uses on trait diversity and tested for the existence of non-random assembly processes using null models. We analysed differences in trait composition among land-uses for both indigenous and exotic species with multivariate analyses. We used point-biserial correlations to identity traits significantly correlated with specific land-uses for each element. Results: We recorded 86 indigenous and 116 exotic arthropod species. Under high-intensity land-use, both indigenous and exotic elements showed significant trait clustering. Trait composition strongly shifted across land-uses, with indigenous and exotic species being functionally dissimilar in all land-uses. Large-bodied herbivores dominated exotic elements in low-intensity land-uses, while small-bodied spiders dominated exotic elements in high-intensity land-uses. In contrast, with increasing land-use intensity, indigenous species changed from functionally diverse to being dominated by piercing and cutting herbivores. Main conclusions: Our study revealed two main findings: first, in high-intensity - land-uses, trait clustering characterized both indigenous and exotic elements; second, exotic species differed in their functional profile from indigenous species in all land-use types. Overall, our results provide new insights into the functional role of exotic species in a land-use context, suggesting that, in agricultural landscape, exotic species may contribute positively to the maintenance of some ecosystem functions.
  • Abrego, Nerea; Norberg, Anna; Ovaskainen, Otso (2017)
    1. The identification of traits that influence the responses of the species to environmental variation provides a mechanistic perspective on the assembly processes of ecological communities. While much research linking functional ecology with assembly processes has been conducted with animals and plants, the development of predictive or even conceptual frameworks for fungal functional community ecology remains poorly explored. Particularly, little is known about the contribution of traits to the occurrences of fungal species under different environmental conditions. 2. Wood-inhabiting fungi are known to strongly respond to habitat disturbance, and thus provide an interesting case study for investigating to what extent variation in occurrence patterns of fungi can be related to traits. We apply a trait-based joint species distribution model to a data set consisting of fruit-body occurrence data on 321 wood-inhabiting fungal species collected in 22 460 dead wood units from managed and natural forest sites. 3. Our results show that environmental filtering plays a big role on shaping wood-inhabiting fungal communities, as different environments held different communities in terms of species and trait compositions. Most importantly, forest management selected against species with large and long-lived fruit-bodies as well as late decayers, and promoted the occurrences of species with small fruit-bodies and early decayers. A strong phylogenetic signal in the data suggested the existence of also some other functionally important traits than the ones we considered. 4. We found that those species groups that were more prevalent in natural conditions had more associations to other species than species groups that were tolerant to or benefitted from forest management. Therefore, the changes that forest management causes on wood-inhabiting fungal communities influence ecosystem functioning through simplification of interactive associations among the fungal species. 5. Synthesis. Our results show that functional traits are linked to the responses of wood-inhabiting fungi to variation in their environment, and thus environmental changes alter ecosystem functions via promoting or reducing species with different fruit-body types. However, further research is needed to identify other functional traits and to provide conclusive evidence for the adaptive nature of the links from traits to occurrence patterns found here.
  • Opedal, Øystein H.; von Numers, Mikael; Tikhonov, Gleb; Ovaskainen, Otso (2020)
    Abstract Predicting the dynamics of biotic communities is difficult because species? environmental responses are not independent, but covary due to shared or contrasting ecological strategies and the influence of species interactions. We used latent-variable joint species distribution models to analyse paired historical and contemporary inventories of 585 vascular plant species on 471 islands in the south-west Finnish archipelago. Larger, more heterogeneous islands were characterized by higher colonisation rates and lower extinction rates. Ecological and taxonomical species groups explained small but detectable proportions of variance in species? environmental responses. To assess the potential influence of species interactions on community dynamics, we estimated species associations as species-to-species residual correlations for historical occurrences, for colonisations, and for extinctions. Historical species associations could to some extent predict joint colonisation patterns, but the overall estimated influence of species associations on community dynamics was weak. These results illustrate the benefits of considering metacommunity dynamics within a joint framework, but also suggest that any influence of species interactions on community dynamics may be hard to detect from observational data.