Browsing by Subject "COMPUTER-PROGRAM"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Valtonen, Mia; Palo, Jukka U.; Aspi, Jouni; Ruokonen, Minna; Kunnasranta, Mervi; Nyman, Tommi (2014)
  • Boluda, C. G.; Rico, V. J.; Divakar, P. K.; Nadyeina, O.; Myllys, L.; McMullin, R. T.; Zamora, J. C.; Scheidegger, C.; Hawksworth, D. L. (2019)
    In many lichen-forming fungi, molecular phylogenetic analyses lead to the discovery of cryptic species within traditional morphospecies. However, in some cases, molecular sequence data also questions the separation of phenotypically characterised species. Here we apply an integrative taxonomy approach - including morphological, chemical, molecular, and distributional characters - to re-assess species boundaries in a traditionally speciose group of hair lichens, Bryoria sect. Implexae. We sampled multilocus sequence and microsatellite data from 142 specimens from a broad intercontinental distribution. Molecular data included DNA sequences of the standard fungal markers ITS, IGS, GAPDH, two newly tested loci (FRBi15 and FRBi16), and SSR frequencies from 18 microsatellite markers. Datasets were analysed with Bayesian and maximum likelihood phylogenetic reconstruction, phenogram reconstruction, STRUCTURE Bayesian clustering, principal coordinate analysis, haplotype network, and several different species delimitation analyses (ABGD, PTP, GMYC, and DISSECT). Additionally, past population demography and divergence times are estimated. The different approaches to species recognition do not support the monophyly of the 11 currently accepted morphospecies, and rather suggest the reduction of these to four phylogenetic species. Moreover, three of these are relatively recent in origin and cryptic, including phenotypically and chemically variable specimens. Issues regarding the integration of an evolutionary perspective into taxonomic conclusions in species complexes, which have undergone recent diversification, are discussed. The four accepted species, all epitypified by sequenced material, are Bryoria fuscescens, B. glabra, B. kockiana, and B. pseudofuscescens. Ten species rank names are reduced to synonymy. In the absence of molecular data, they can be recorded as the B. fuscescens complex. Intraspecific phenotype plasticity and factors affecting the speciation of different morphospecies in this group of Bryoria are outlined.
  • Shikano, Takahito; Järvinen, Antero; Marjamaki, Paula; Kahilainen, Kimmo K.; Merilä, Juha (2015)
    Variation in presumably neutral genetic markers can inform us about evolvability, historical effective population sizes and phylogeographic history of contemporary populations. We studied genetic variability in 15 microsatellite loci in six native landlocked Arctic charr (Salvelinus alpinus) populations in northern Fennoscandia, where this species is considered near threatened. We discovered that all populations were genetically highly (mean F-ST approximate to 0.26) differentiated and isolated from each other. Evidence was found for historical, but not for recent population size bottlenecks. Estimates of contemporary effective population size (N-e) ranged from seven to 228 and were significantly correlated with those of historical N-e but not with lake size. A census size (N-C) was estimated to be approximately 300 individuals in a pond (0.14 ha), which exhibited the smallest N-e (i.e. N-e/N-C = 0.02). Genetic variability in this pond and a connected lake is severely reduced, and both genetic and empirical estimates of migration rates indicate a lack of gene flow between them. Hence, albeit currently thriving, some northern Fennoscandian populations appear to be vulnerable to further loss of genetic variability and are likely to have limited capacity to adapt if selection pressures change.
  • García-Fernández, Alfredo; Manzano, Pablo; Seoane, Javier; Azcárate, Francisco M.; Iriondo, Jose M.; Peco, Begoña (2019)
    Habitat fragmentation is one of the greatest threats to biodiversity conservation and ecosystem productivity mediated by direct human impact. Its consequences include genetic depauperation, comprising phenomena such as inbreeding depression or reduction in genetic diversity. While the capacity of wild and domestic herbivores to sustain long-distance seed dispersal has been proven, the impact of herbivore corridors in plant population genetics remains to be observed. We conducted this study in the Conquense Drove Road in Spain, where sustained use by livestock over centuries has involved transhumant herds passing twice a year en route to winter and summer pastures. We compared genetic diversity and inbreeding coefficients of Plantago lagopus populations along the drove road with populations in the surrounding agricultural matrix, at varying distances from human settlements. We observed significant differences in coefficients of inbreeding between the drove road and the agricultural matrix, as well as significant trends indicative of higher genetic diversity and population nestedness around human settlements. Trends for higher genetic diversity along drove roads may be present, although they were only marginally significant due to the available sample size. Our results illustrate a functional landscape with human settlements as dispersal hotspots, while the findings along the drove road confirm its role as a pollinator reservoir observed in other studies. Drove roads may possibly also function as linear structures that facilitate long-distance dispersal across the agricultural matrix, while local P. lagopus populations depend rather on short-distance seed dispersal. These results highlight the role of herbivore corridors for conserving the migration capacity of plants, and contribute towards understanding the role of seed dispersal and the spread of invasive species related to human activities.
  • Fountain, Toby; Duvaux, Ludovic; Horsburgh, Gavin; Reinhardt, Klaus; Butlin, Roger K. (2014)
  • Vakkari, Pekka; Rusanen, Mari; Heikkinen, Juha; Huotari, Tea; Karkkainen, Katri (2020)
    The genetic structure of populations at the edge of species distribution is important for species adaptation to environmental changes. Small populations may experience non-random mating and differentiation due to genetic drift but larger populations, too, may have low effective size, e.g., due to the within-population structure. We studied spatial population structure of pedunculate oak,Quercus robur, at the northern edge of the species' global distribution, where oak populations are experiencing rapid climatic and anthropogenic changes. Using 12 microsatellite markers, we analyzed genetic differentiation of seven small to medium size populations (census sizes 57-305 reproducing trees) and four populations for within-population genetic structures. Genetic differentiation among seven populations was low (Fst = 0.07). We found a strong spatial genetic structure in each of the four populations. Spatial autocorrelation was significant in all populations and its intensity (Sp) was higher than those reported in more southern oak populations. Significant genetic patchiness was revealed by Bayesian structuring and a high amount of spatially aggregated full and half sibs was detected by sibship reconstruction. Meta-analysis of isoenzyme and SSR data extracted from the (GD)(2)database suggested northwards decreasing trend in the expected heterozygosity and an effective number of alleles, thus supporting the central-marginal hypothesis in oak populations. We suggest that the fragmented distribution and location of Finnish pedunculate oak populations at the species' northern margin facilitate the formation of within-population genetic structures. Information on the existence of spatial genetic structures can help conservation managers to design gene conservation activities and to avoid too strong family structures in the sampling of seeds and cuttings for afforestation and tree improvement purposes.