Browsing by Subject "CORONAL MASS EJECTIONS"

Sort by: Order: Results:

Now showing items 1-20 of 24
  • Andreeova, K.; Kilpua, E. K. J.; Hietala, H.; Koskinen, H. E. J.; Isavnin, A.; Vainio, R. (2013)
    In this paper we have analyzed a substructure found within a leading part of a north–south-oriented magnetic cloud (MC) observed on 3–4 September 2008 in the near-Earth solar wind by multiple spacecraft (ACE, Wind, THEMIS B and C). The MC was preceded by a stream interface (SI) and followed by a high-speed stream (HSS). The identified substructure featured a strong depletion of suprathermal halo electrons and showed distinct magnetic field and plasma signatures. It occurred where suprathermal electron flow within a cloud changed from bidirectional to unidirectional, indicating change in the field line connectivity to the Sun. We found that the substructure maintained roughly its integrity from the first Lagrangian point to the vicinity of the Earth's bow shock in the front edge of the MC, but revealed small changes in the structure which could be explained either by temporal evolution or spatial configuration of the spacecraft.
  • Scolini, Camilla; Chane, Emmanuel; Temmer, Manuela; Kilpua, Emilia K. J.; Dissauer, Karin; Veronig, Astrid M.; Palmerio, Erika; Pomoell, Jens; Dumbovic, Mateja; Guo, Jingnan; Rodriguez, Luciano; Poedts, Stefaan (2020)
    Coronal mass ejections (CMEs) are the primary sources of intense disturbances at Earth, where their geo-effectiveness is largely determined by their dynamic pressure and internal magnetic field, which can be significantly altered during interactions with other CMEs in interplanetary space. We analyse three successive CMEs that erupted from the Sun during September 4-6, 2017, investigating the role of CME-CME interactions as source of the associated intense geomagnetic storm (Dst(min)=-142 nT on September 7). To quantify the impact of interactions on the (geo-)effectiveness of individual CMEs, we perform global heliospheric simulations with the EUHFORIA model, using observation-based initial parameters with the additional purpose of validating the predictive capabilities of the model for complex CME events. The simulations show that around 0.45 AU, the shock driven by the September 6 CME started compressing a preceding magnetic ejecta formed by the merging of two CMEs launched on September 4, significantly amplifying its B-z until a maximum factor of 2.8 around 0.9 AU. The following gradual conversion of magnetic energy into kinetic and thermal components reduced the B-z amplification until its almost complete disappearance around 1.8 AU. We conclude that a key factor at the origin of the intense storm triggered by the September 4-6, 2017 CMEs was their arrival at Earth during the phase of maximum B-z amplification. Our analysis highlights how the amplification of the magnetic field of individual CMEs in space-time due to interaction processes can be characterised by a growth, a maximum, and a decay phase, suggesting that the time interval between the CME eruptions and their relative speeds are critical factors in determining the resulting impact of complex CMEs at various heliocentric distances (helio-effectiveness).
  • Harrison, R. A.; Davies, J. A.; Barnes, D.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstril, D. (2018)
    We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA's twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate outwards.
  • Barnes, D.; Davies, J. A.; Harrison, R. A.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrcil, D. (2019)
    Recent observations with the Heliospheric Imagers (HIs) onboard the twin NASA Solar Terrestrial Relations Observatory (STEREO) spacecraft have provided unprecedented observations of a large number of coronal mass ejections (CMEs) in the inner heliosphere. In this article we discuss the generation of the HIGeoCAT CME catalogue and perform a statistical analysis of its events. The catalogue was generated as part of the EU FP7 HELCATS (Heliospheric Cataloguing, Analysis and Techniques Service) project (www.helcats-fp7.eu/). It is created by generating time/elongation maps for CMEs using observations from the inner (HI-1) and outer (HI-2) cameras along a position angle close to the CME apex. Next, we apply single-spacecraft geometric-fitting techniques to determine the kinematic properties of these CMEs, including their speeds, propagation directions, and launch times. The catalogue contains a total of 1455 events (801 from STEREO-A and 654 from STEREO-B) from April 2007 to the end of August 2017. We perform a statistical analysis of the properties of CMEs in HIGeoCAT and compare the results with those from the Large Angle Spectrometric Coronagraph (LASCO) CDAW catalogues (Yashiro etal.J.Geophys. Res. Space Phys.109, A07105, 2004) and the COR-2 catalogue of Vourlidas etal. (Astrophys. J.838, 141, 2004) during the same period. We find that the distributions of both speeds and latitudes for the HIGeoCAT CMEs correlate with the sunspot number over the solar cycle. We also find that the HI-derived CME speed distributions are generally consistent with coronagraph catalogues over the solar cycle, albeit with greater absolute speeds due to the differing methods with which each is derived.
  • Good, S. W.; Kilpua, E. K. J.; Ala-Lahti, M.; Osmane, A.; Bale, S. D.; Zhao, L. -L. (2020)
    Magnetic clouds are large-scale transient structures in the solar wind with low plasma-beta, low-amplitude magnetic field fluctuations, and twisted field lines with both ends often connected to the Sun. Their inertial-range turbulent properties have not been examined in detail. In this Letter, we analyze the normalized cross helicity, sigma(c), and residual energy, sigma(r), of plasma fluctuations in the 2018 November magnetic cloud observed at 0.25.au by the Parker Solar Probe. A low value of |sigma(c)| was present in the cloud core, indicating that wave power parallel and antiparallel to the mean field was approximately balanced, while the cloud's outer layers displayed larger amplitude Alfvenic fluctuations with high |sigma(c)| values and sigma(r) similar to 0. These properties are discussed in terms of the cloud's solar connectivity and local interaction with the solar wind. We suggest that low |sigma(c)| is likely a common feature of magnetic clouds given their typically closed field structure. Antisunward fluctuations propagating immediately upstream of the cloud had strongly negative sigma(r) values.
  • Palmerio, E.; Kilpua, E. K. J.; James, A. W.; Green, L. M.; Pomoell, J.; Isavnin, A.; Valori, G. (2017)
    A key aim in space weather research is to be able to use remote-sensing observations of the solar atmosphere to extend the lead time of predicting the geoeffectiveness of a coronal mass ejection (CME). In order to achieve this, the magnetic structure of the CME as it leaves the Sun must be known. In this article we address this issue by developing a method to determine the intrinsic flux rope type of a CME solely from solar disk observations. We use several well-known proxies for the magnetic helicity sign, the axis orientation, and the axial magnetic field direction to predict the magnetic structure of the interplanetary flux rope. We present two case studies: the 2 June 2011 and the 14 June 2012 CMEs. Both of these events erupted from an active region, and despite having clear in situ counterparts, their eruption characteristics were relatively complex. The first event was associated with an active region filament that erupted in two stages, while for the other event the eruption originated from a relatively high coronal altitude and the source region did not feature a filament. Our magnetic helicity sign proxies include the analysis of magnetic tongues, soft X-ray and/or extreme-ultraviolet sigmoids, coronal arcade skew, filament emission and absorption threads, and filament rotation. Since the inclination of the posteruption arcades was not clear, we use the tilt of the polarity inversion line to determine the flux rope axis orientation and coronal dimmings to determine the flux rope footpoints, and therefore, the direction of the axial magnetic field. The comparison of the estimated intrinsic flux rope structure to in situ observations at the Lagrangian point L1 indicated a good agreement with the predictions. Our results highlight the flux rope type determination techniques that are particularly useful for active region eruptions, where most geoeffective CMEs originate.
  • Warnecke, Jörn; Käpylä, Petri J.; Mantere, Maarit J.; Brandenburg, Axel (2012)
  • Rollett, T.; Moestl, C.; Isavnin, A.; Davies, J. A.; Kubicka, M.; Amerstorfer, U. V.; Harrison, R. A. (2016)
    In this study, we present a new method for forecasting arrival times and speeds of coronal mass ejections (CMEs) at any location in the inner heliosphere. This new approach enables the adoption of a highly flexible geometrical shape for the CME front with an adjustable CME angular width and an adjustable radius of curvature of its leading edge, i.e., the assumed geometry is elliptical. Using, as input, Solar TErrestrial RElations Observatory (STEREO) heliospheric imager (HI) observations, a new elliptic conversion (ElCon) method is introduced and combined with the use of drag-based model (DBM) fitting to quantify the deceleration or acceleration experienced by CMEs during propagation. The result is then used as input for the Ellipse Evolution Model (ElEvo). Together, ElCon, DBM fitting, and ElEvo form the novel ElEvoHI forecasting utility. To demonstrate the applicability of ElEvoHI, we forecast the arrival times and speeds of 21 CMEs remotely observed from STEREO/HI and compare them to in situ arrival times and speeds at 1 AU. Compared to the commonly used STEREO/HI fitting techniques (Fixed-phi, Harmonic Mean, and Self-similar Expansion fitting), ElEvoHI improves the arrival time forecast by about 2 to +/- 6.5 hr and the arrival speed forecast by approximate to 250 to +/- 53 km s(-1), depending on the ellipse aspect ratio assumed. In particular, the remarkable improvement of the arrival speed prediction is potentially beneficial for predicting geomagnetic storm strength at Earth.
  • Pomoell, Jens; Poedts, Stefaan (2018)
    The implementation and first results of the new space weather forecasting-targeted inner heliosphere model "European heliospheric forecasting information asset" (EUHFORIA) are presented. EUHFORIA consists of two major components: a coronal model and a heliosphere model including coronal mass ejections. The coronal model provides data-driven solar wind plasma parameters at 0.1AU by constructing a model of the coronal large-scale magnetic field and employing empirical relations to determine the plasma state such as the solar wind speed and mass density. These are then used as boundary conditions to drive a three-dimensional time-dependent magnetohydrodynamics model of the inner heliosphere up to 2 AU. CMEs are injected into the ambient solar wind modeled using the cone model, with their parameters obtained from fits to imaging observations. In addition to detailing the modeling methodology, an initial validation run is presented. The results feature a highly dynamic heliosphere that the model is able to capture in good agreement with in situ observations. Finally, future horizons for the model are outlined.
  • Moschou, Sofia-Paraskevi; Pierrard, Viviane; Keppens, Rony; Pomoell, Jens (2017)
    An exospheric kinetic solar wind model is interfaced with an observation-driven single-fluid magnetohydrodynamic (MHD) model. Initially, a photospheric magnetogram serves as observational input in the fluid approach to extrapolate the heliospheric magnetic field. Then semi-empirical coronal models are used for estimating the plasma characteristics up to a heliocentric distance of 0.1 AU. From there on, a full MHD model that computes the three-dimensional time-dependent evolution of the solar wind macroscopic variables up to the orbit of Earth is used. After interfacing the density and velocity at the inner MHD boundary, we compare our results with those of a kinetic exospheric solar wind model based on the assumption of Maxwell and Kappa velocity distribution functions for protons and electrons, respectively, as well as with in situ observations at 1 AU. This provides insight into more physically detailed processes, such as coronal heating and solar wind acceleration, which naturally arise from including suprathermal electrons in the model. We are interested in the profile of the solar wind speed and density at 1 AU, in characterizing the slow and fast source regions of the wind, and in comparing MHD with exospheric models in similar conditions. We calculate the energetics of both models from low to high heliocentric distances.
  • Milillo, A.; Fujimoto, M.; Murakami, G.; Benkhoff, J.; Zender, J.; Aizawa, S.; Dosa, M.; Griton, L.; Heyner, D.; Ho, G.; Imber, S. M.; Jia, Yan; Karlsson, T.; Killen, R. M.; Laurenza, M.; Lindsay, S. T.; McKenna-Lawlor, S.; Mura, A.; Raines, J. M.; Rothery, D. A.; Andre, N.; Baumjohann, W.; Berezhnoy, A.; Bourdin, P. A.; Bunce, E. J.; Califano, F.; Deca, J.; de la Fuente, S.; Dong, C.; Grava, C.; Fatemi, S.; Henri, P.; Ivanovski, S. L.; Jackson, B. V.; James, M.; Kallio, E.; Kasaba, Y.; Kilpua, E.; Kobayashi, M.; Langlais, B.; Leblanc, F.; Lhotka, C.; Mangano, V.; Martindale, A.; Massetti, S.; Masters, A.; Morooka, M.; Narita, Y.; Oliveira, J. S.; Odstrcil, D.; Orsini, S.; Pelizzo, M. G.; Plainaki, C.; Plaschke, F.; Sahraoui, Afaf; Seki, K.; Slavin, J. A.; Vainio, R.; Wurz, P.; Barabash, S.; Carr, C. M.; Delcourt, D.; Glassmeier, K. -H.; Grande, M.; Hirahara, M.; Huovelin, J.; Korablev, O.; Kojima, H.; Lichtenegger, H.; Livi, S.; Matsuoka, A.; Moissl, R.; Moncuquet, M.; Muinonen, K.; Quemerais, E.; Saito, Y.; Yagitani, S.; Yoshikawa, I.; Wahlund, J. -E. (2020)
    The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  • Plaschke, Ferdinand; Hietala, Heli; Archer, Martin; Blanco-Cano, Xochitl; Kajdic, Primoz; Karlsson, Tomas; Lee, Sun Hee; Omidi, Nojan; Palmroth, Minna; Roytershteyn, Vadim; Schmid, Daniel; Sergeev, Victor; Sibeck, David (2018)
    The magnetosheath flow may take the form of large amplitude, yet spatially localized, transient increases in dynamic pressure, known as "magnetosheath jets" or "plasmoids" among other denominations. Here, we describe the present state of knowledge with respect to such jets, which are a very common phenomenon downstream of the quasi-parallel bow shock. We discuss their properties as determined by satellite observations (based on both case and statistical studies), their occurrence, their relation to solar wind and foreshock conditions, and their interaction with and impact on the magnetosphere. As carriers of plasma and corresponding momentum, energy, and magnetic flux, jets bear some similarities to bursty bulk flows, which they are compared to. Based on our knowledge of jets in the near Earth environment, we discuss the expectations for jets occurring in other planetary and astrophysical environments. We conclude with an outlook, in which a number of open questions are posed and future challenges in jet research are discussed.
  • Grandin, Maxime; Palmroth, Minna; Whipps, Graeme; Kalliokoski, Milla; Ferrier, Mark; Paxton, Larry J.; Mlynczak, Martin G.; Hilska, Jukka; Holmseth, Knut; Vinorum, Kjetil; Whenman, Barry (2021)
    Recently, citizen scientist photographs led to the discovery of a new auroral form called "the dune aurora" which exhibits parallel stripes of brighter emission in the green diffuse aurora at about 100 km altitude. This discovery raised several questions, such as (i) whether the dunes are associated with particle precipitation, (ii) whether their structure arises from spatial inhomogeneities in the precipitating fluxes or in the underlying neutral atmosphere, and (iii) whether they are the auroral manifestation of an atmospheric wave called a mesospheric bore. This study investigates a large-scale dune aurora event on 20 January 2016 above Northern Europe. The dunes were observed from Finland to Scotland, spanning over 1,500 km for at least 4 h. Spacecraft observations indicate that the dunes are associated with particle precipitation and reveal the presence of a temperature inversion layer below the mesopause during the event, creating suitable conditions for mesospheric bore formation. The analysis of a time lapse of pictures by a citizen scientist from Scotland leads to the estimate that, during this event, the dunes propagate toward the west-southwest direction at about 200 m s(-1), presumably indicating strong horizontal winds near the mesopause. These results show that citizen science and dune aurora studies can fill observational gaps and be powerful tools to investigate the least-known region of near-Earth space at altitudes near 100 km.
  • Myllys, M.; Partamies, N.; Juusola, L. (2015)
    To validate the usage of global indices in studies of geomagnetic activity, we have examined the latitude dependence of geomagnetic variations in Fennoscandia and Svalbard from 1994 to 2010. Daily standard deviation (SD) values of the horizontal magnetic field have been used as a measure of the ground magnetic disturbance level. We found that the timing of the geomagnetic minimum depends on the latitude region: corresponding to the minimum of sunspot cycle 22 (in 1996), the geomagnetic minimum occurred between the geomagnetic latitudes 57-61 degrees in 1996 and at the latitudes 64-67 degrees in 1997, which are the average auroral oval latitudes. During sunspot cycle 23, all latitude regions experienced the minimum in 2009, a year after the sunspot minimum. These timing differences are due to the latitude dependence of the 10 s daily SD on the different solar wind drivers. In the latitude region of 64-67 degrees, the impact of the high-speed solar wind streams (HSSs) on the geomagnetic activity is the most pronounced compared to the other latitude groups, while in the latitude region of 57-61 degrees, the importance of the coronal mass ejections (CMEs) dominates. The geomagnetic activity maxima during ascending solar cycle phases are typically caused by CME activity and occur especially in the oval and sub-auroral regions. The strongest geomagnetic activity occurs during the descending solar cycle phases due to a mixture of CME and HSS activity. Closer to the solar minimum, less severe geomagnetic activity is driven by HSSs and mainly visible in the poleward part of the auroral region. According to our study, however, the timing of the geomagnetic activity minima (and maxima) in different latitude bands is different, due to the relative importance of different solar wind drivers at different latitudes.
  • Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchere, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Genot, V.; Georgoulis, M. K.; Gilbert, H. R.; Giunta, A.; Gomez-Herrero, R.; Guest, S.; Haberreiter, M.; Hassler, D.; Henney, C. J.; Howard, R. A.; Horbury, T. S.; Janvier, M.; Jones, S. I.; Kozarev, K.; Kraaikamp, E.; Kouloumvakos, A.; Krucker, S.; Lagg, A.; Linker, J.; Lavraud, B.; Louarn, P.; Maksimovic, M.; Maloney, S.; Mann, G.; Masson, A.; Mueller, D.; Onel, H.; Osuna, P.; Orozco Suarez, D.; Owen, C. J.; Papaioannou, A.; Perez-Suarez, D.; Rodriguez-Pacheco, J.; Parenti, S.; Pariat, E.; Peter, H.; Plunkett, S.; Pomoell, J.; Raines, J. M.; Riethmueller, T. L.; Rich, N.; Rodriguez, L.; Romoli, M.; Sanchez, L.; Solanki, S. K.; St Cyr, O. C.; Straus, T.; Susino, R.; Teriaca, L.; del Toro Iniesta, J. C.; Ventura, R.; Verbeeck, C.; Vilmer, N.; Warmuth, A.; Walsh, A. P.; Watson, C.; Williams, D.; Wu, Y.; Zhukov, A. N. (2020)
    Context. The Solar Orbiter spacecraft will be equipped with a wide range of remote-sensing (RS) and in situ (IS) instruments to record novel and unprecedented measurements of the solar atmosphere and the inner heliosphere. To take full advantage of these new datasets, tools and techniques must be developed to ease multi-instrument and multi-spacecraft studies. In particular the currently inaccessible low solar corona below two solar radii can only be observed remotely. Furthermore techniques must be used to retrieve coronal plasma properties in time and in three dimensional (3D) space. Solar Orbiter will run complex observation campaigns that provide interesting opportunities to maximise the likelihood of linking IS data to their source region near the Sun. Several RS instruments can be directed to specific targets situated on the solar disk just days before data acquisition. To compare IS and RS, data we must improve our understanding of how heliospheric probes magnetically connect to the solar disk.Aims. The aim of the present paper is to briefly review how the current modelling of the Sun and its atmosphere can support Solar Orbiter science. We describe the results of a community-led effort by European Space Agency's Modelling and Data Analysis Working Group (MADAWG) to develop different models, tools, and techniques deemed necessary to test different theories for the physical processes that may occur in the solar plasma. The focus here is on the large scales and little is described with regards to kinetic processes. To exploit future IS and RS data fully, many techniques have been adapted to model the evolving 3D solar magneto-plasma from the solar interior to the solar wind. A particular focus in the paper is placed on techniques that can estimate how Solar Orbiter will connect magnetically through the complex coronal magnetic fields to various photospheric and coronal features in support of spacecraft operations and future scientific studies.Methods. Recent missions such as STEREO, provided great opportunities for RS, IS, and multi-spacecraft studies. We summarise the achievements and highlight the challenges faced during these investigations, many of which motivated the Solar Orbiter mission. We present the new tools and techniques developed by the MADAWG to support the science operations and the analysis of the data from the many instruments on Solar Orbiter.Results. This article reviews current modelling and tool developments that ease the comparison of model results with RS and IS data made available by current and upcoming missions. It also describes the modelling strategy to support the science operations and subsequent exploitation of Solar Orbiter data in order to maximise the scientific output of the mission.Conclusions. The on-going community effort presented in this paper has provided new models and tools necessary to support mission operations as well as the science exploitation of the Solar Orbiter data. The tools and techniques will no doubt evolve significantly as we refine our procedure and methodology during the first year of operations of this highly promising mission.
  • Kilpua, Emilia K. J.; Good, Simon W.; Palmerio, Erika; Asvestari, Eleanna; Lumme, Erkka; Ala-Lahti, Matti; Kalliokoski, Milla M. H.; Morosan, Diana E.; Pomoell, Jens; Price, Daniel J.; Magdalenić, Jasmina; Poedts, Stefaan; Futaana, Yoshifumi (2019)
    We report a detailed analysis of interplanetary flux ropes observed at Venus and subsequently at Earth's Lagrange L1 point between June 15 and 17, 2012. The observation points were separated by about 0.28 AU in radial distance and 5 degrees in heliographic longitude at this time. The flux ropes were associated with three coronal mass ejections (CMEs) that erupted from the Sun on June 12-14, 2012 (SOL2012-06-12, SOL2012-06-13, and SOL2012-06-14). We examine the CME-CME interactions using in-situ observations from the almost radially aligned spacecraft at Venus and Earth, as well as using heliospheric modeling and imagery. The June 14 CME reached the June 13 CME near the orbit of Venus and significant interaction occurred before they both reached Earth. The shock driven by the June 14 CME propagated through the June 13 CME and the two CMEs coalesced, creating the signatures of one large, coherent flux rope at L1. We discuss the origin of the strong interplanetary magnetic fields related to this sequence of events, the complexity of interpreting solar wind observations in the case of multiple interacting CMEs, and the coherence of the flux ropes at different observation points.
  • Davies, Emma E.; Forsyth, Robert J.; Good, Simon W.; Kilpua, Emilia K. J. (2020)
    We present observations of the same magnetic cloud made near Earth by the Advance Composition Explorer (ACE), Wind, and the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) mission comprising the Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and THEMIS C spacecraft, and later by Juno at a distance of 1.2 AU. The spacecraft were close to radial alignment throughout the event, with a longitudinal separation of 3.6 degrees between Juno and the spacecraft near Earth. The magnetic cloud likely originated from a filament eruption on 22 October 2011 at 00:05 UT, and caused a strong geomagnetic storm at Earth commencing on 24 October. Observations of the magnetic cloud at each spacecraft have been analysed using minimum variance analysis and two flux rope fitting models, Lundquist and Gold-Hoyle, to give the orientation of the flux rope axis. We explore the effect different trailing edge boundaries have on the results of each analysis method, and find a clear difference between the orientations of the flux rope axis at the near-Earth spacecraft and Juno, independent of the analysis method. The axial magnetic field strength and the radial width of the flux rope are calculated using both observations and fitting parameters and their relationship with heliocentric distance is investigated. Differences in results between the near-Earth spacecraft and Juno are attributed not only to the radial separation, but to the small longitudinal separation which resulted in a surprisingly large difference in the in situ observations between the spacecraft. This case study demonstrates the utility of Juno cruise data as a new opportunity to study magnetic clouds beyond 1 AU, and the need for caution in future radial alignment studies.
  • James, A. W.; Green, L. M.; Palmerio, E.; Valori, G.; Reid, H. A. S.; Baker, D.; Brooks, D. H.; van Driel-Gesztelyi, L.; Kilpua, E. K. J. (2017)
    Coronal mass ejections (CMEs) are one of the primary manifestations of solar activity and can drive severe space weather effects. Therefore, it is vital to work towards being able to predict their occurrence. However, many aspects of CME formation and eruption remain unclear, including whether magnetic flux ropes are present before the onset of eruption and the key mechanisms that cause CMEs to occur. In this work, the pre-eruptive coronal configuration of an active region that produced an interplanetary CME with a clear magnetic flux rope structure at 1 AU is studied. A forward-S sigmoid appears in extremeultra-violet (EUV) data two hours before the onset of the eruption (SOL2012-06-14), which is interpreted as a signature of a right-handed flux rope that formed prior to the eruption. Flare ribbons and EUV dimmings are used to infer the locations of the flux rope footpoints. These locations, together with observations of the global magnetic flux distribution, indicate that an interaction between newly emerged magnetic flux and pre-existing sunspot field in the days prior to the eruption may have enabled the coronal flux rope to form via tethercutting-like reconnection. Composition analysis suggests that the flux rope had a coronal plasma composition, supporting our interpretation that the flux rope formed via magnetic reconnection in the corona. Once formed, the flux rope remained stable for two hours before erupting as a CME.
  • George, Harriet; Kilpua, Emilia; Osmane, Adnane; Asikainen, Timo; Kalliokoski, Milla M. H.; Rodger, Craig J.; Dubyagin, Stepan; Palmroth, Minna (2020)
    Recently, it has been established that interplanetary coronal mass ejections (ICMEs) can dramatically affect both trapped electron fluxes in the outer radiation belt and precipitating electron fluxes lost from the belt into the atmosphere. Precipitating electron fluxes and energies can vary over a range of timescales during these events. These variations depend on the initial energy and location of the electron population and the ICME characteristics and structures. One important factor controlling electron dynamics is the magnetic field orientation within the ejecta that is an integral part of the ICME. In this study, we examine Van Allen Probes (RBSPs) and Polar Orbiting Environmental Satellites (POESs) data to explore trapped and precipitating electron fluxes during two ICMEs. The ejecta in the selected ICMEs have magnetic cloud characteristics that exhibit the opposite sense of the rotation of the north-south magnetic field component (B-Z). RBSP data are used to study trapped electron fluxes in situ, while POES data are used for electron fluxes precipitating into the upper atmosphere. The trapped and precipitating electron fluxes are qualitatively analysed to understand their variation in relation to each other and to the magnetic cloud rotation during these events. Inner magnetospheric wave activity was also estimated using RBSP and Geostationary Operational Environmental Satellite (GOES) data. In each event, the largest changes in the location and magnitude of both the trapped and precipitating electron fluxes occurred during the southward portion of the magnetic cloud. Significant changes also occurred during the end of the sheath and at the sheath-ejecta boundary for the cloud with south to north magnetic field rotation, while the ICME with north to south rotation had significant changes at the end boundary of the cloud. The sense of rotation of B-Z and its profile also clearly affects the coherence of the trapped and/or precipitating flux changes, timing of variations with respect to the ICME structures, and flux magnitude of different electron populations. The differing electron responses could therefore imply partly different dominant acceleration mechanisms acting on the outer radiation belt electron populations as a result of opposite magnetic cloud rotation.
  • Grandin, Maxime; Aikio, Anita T.; Kozlovsky, Alexander (2019)
    We study the properties and geoeffectiveness of solar wind high-speed streams (HSSs) emanating from coronal holes and associated with stream interaction regions (SIRs). This paper presents a statistical study of 588 SIR/HSS events with solar wind speed at 1 AU exceeding 500 km/s during 1995-2017, encompassing the decline of solar cycle 22 to the decline of cycle 24. Events are detected using measurements of the solar wind speed and the interplanetary magnetic field. Events misidentified as or interacting with interplanetary coronal mass ejections are removed by comparison with an existing interplanetary coronal mass ejection list. Using this SIR/HSS event catalog (list given in the supporting information), a superposed epoch analysis of key solar wind parameters is carried out. It is found that the number of SIR/HSSs peaks during the late declining phase of solar cycle (SC) 23, as does their velocity, but that their geoeffectiveness in terms of the AE and SYM-H indices is low. This can be explained by the anomalously low values of magnetic field during the extended solar minimum. Within SC23 and SC24, the highest geoeffectiveness of SIR/HSSs takes place during the early declining phases. Geoeffectiveness of SIR/HSSs continues to be up to 40% lower during SC24 than SC23, which can be explained by the solar wind properties.