Browsing by Subject "COTTON"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Forsman, Nina; Johansson, Leena-Sisko; Koivula, Hanna; Tuure, Matilda; Kääriäinen, Pirjo; Österberg, Monika (2020)
    Environmental benign cellulosic textiles are hampered by their tendency to absorb water, which restricts their use in functional clothing. Herein we describe a method to functionalize textile surfaces using thin, open coatings based on natural wax particles and natural polymers rendering cellulosic fabrics water-repellent while retaining their feel and breathability. The impact of curing temperature, cationic polymer and fabric properties on wetting and long-term water-repellency were studied using contact angle measurements and scanning electron microscopy. The wetting properties were correlated to roughness of the textiles using white light interferometer. X-ray photoelectron spectroscopy revealed the surface chemical composition, leading to fundamental understanding of the effect of annealing on the wax layer. Breathability was evaluated by water vapor permeability. The optimal curing temperature was 70 °C. The developed coating performed well on different natural textiles, and better than commercial alternatives. A set of garment prototypes were produced using the coating.
  • Haslinger, Simone; Hietala, Sami; Hummel, Michael; Maunu, Sirkka Liisa; Sixta, Herbert (2019)
    The valorization of cellulose rich textile waste is promoted by the development of a novel solid-state NMR method for the quantification of cellulose and polyester in textile blends. We applied C-13 CP-MAS NMR as a tool for the quantification and structural characterization of cellulose in cotton polyester blends. Gaussian functions were used to integrate the spectra obtained from a set of calibration standards in order to calculate a sigmoidal calibration curve. Acid hydrolysis was chosen as a reference method. The results demonstrated that solid-state NMR enables a reliable determination of cellulose and polyester in both preconsumer and postconsumer waste textiles and suggests a possible extension of the concept to blends of man-made cellulose fibers (MMCFs) and polyester.