Browsing by Subject "CUCKOO"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Sætre, Camilla Lo Cascio; Eroukhmanoff, Fabrice; Rönkä, Katja; Kluen, Edward; Thorogood, Rose; Torrance, James; Tracey, Alan; Chow, William; Pelan, Sarah; Howe, Kerstin; Jakobsen, Kjetill S.; Tørresen, Ole K. (2021)
    The reed warbler (Acrocephalus scirpaceus) is a long-distance migrant passerine with a wide distribution across Eurasia. This species has fascinated researchers for decades, especially its role as host of a brood parasite, and its capacity for rapid phenotypic change in the face of climate change. Currently, it is expanding its range northwards in Europe, and is altering its migratory behavior in certain areas. Thus, there is great potential to discover signs of recent evolution and its impact on the genomic composition of the reed warbler. Here, we present a high-quality reference genome for the reed warbler, based on PacBio, 10×, and Hi-C sequencing. The genome has an assembly size of 1,075,083,815 bp with a scaffold N50 of 74,438,198 bp and a contig N50 of 12,742,779 bp. BUSCO analysis using aves_odb10 as a model showed that 95.7% of BUSCO genes were complete. We found unequivocal evidence of two separate macrochromosomal fusions in the reed warbler genome, in addition to the previously identified fusion between chromosome Z and a part of chromosome 4A in the Sylvioidea superfamily. We annotated 14,645 protein-coding genes, and a BUSCO analysis of the protein sequences indicated 97.5% completeness. This reference genome will serve as an important resource, and will provide new insights into the genomic effects of evolutionary drivers such as coevolution, range expansion, and adaptations to climate change, as well as chromosomal rearrangements in birds.
  • Cotter, S. C.; Pincheira-Donoso, D.; Thorogood, R. (2019)
    Parasitic interactions are so ubiquitous that all multicellular organisms have evolved a system of defences to reduce their costs, whether the parasites they encounter are the “classic parasites” that feed on the individual, or “brood parasites” that usurp parental care. Many parallels have been drawn between defences deployed against both types of parasite, but typically, whilst defences against classic parasites have been selected to protect survival, those against brood parasites have been selected to protect the parent’s inclusive fitness, suggesting that the selection pressures they impose are fundamentally different. However, there is another class of defences against classic parasites that have specifically been selected to protect an individual’s inclusive fitness, known as “social immunity”. Social immune responses include the anti-parasite defences typically provided for others in kin-structured groups, such as the antifungal secretions produced by termite workers to protect the brood. Defences against brood parasites, therefore, are more closely aligned with social immune responses. Much like social immunity, host defences against brood parasitism are employed by a donor (a parent) for the benefit of one or more recipients (typically kin), and as with social defences against classic parasites, defences have therefore evolved to protect the donor’s inclusive fitness, not the survival or ultimately the fitness of individual recipients This can lead to severe conflicts between the different parties, whose interests are not always aligned. Here we consider defences against brood parasitism in the light of social immunity, at different stages of parasite encounter, addressing where conflicts occur and how they might be resolved. We finish with considering how this approach could help us to address longstanding questions in our understanding of brood parasitism.
  • Thorogood, Rose; Spottiswoode, Claire N.; Portugal, Steven J.; Gloag, Ros (2019)
    Obligate brood-parasitic cheats have fascinated natural historians since ancient times. Passing on the costs of parental care to others occurs widely in birds, insects and fish, and often exerts selection pressure on hosts that in turn evolve defences. Brood parasites have therefore provided an illuminating system for researching coevolution. Nevertheless, much remains unknown about howecology and evolutionary history constrain or facilitate brood parasitism, or the mechanisms that shape or respond to selection. In this special issue, we bring together examples fromacross the animal kingdomto illustrate the diverseways in which recent research is addressing these gaps. This special issue also considers how research on brood parasitism may benefit from, and in turn inform, related fields such as social evolution and immunity. Here, we argue that progress in our understanding of coevolution would benefit from the increased integration of ideas across taxonomic boundaries and across Tinbergen's Four Questions: mechanism, ontogeny, function and phylogeny of brood parasitism. We also encourage renewed vigour in uncovering the natural history of the majority of the world's brood parasites that remain little-known. Indeed, it seems very likely that some of nature's brood parasites remain entirely unknown, because otherwise we are left with a puzzle: if parental care is so costly, why is brood parasitism not more common? This article is part of the theme issue 'The coevolutionary biology of brood parasitism: from mechanism to pattern'.