Browsing by Subject "CULEX-PIPIENS"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Heitmann, A.; Jansen, S.; Luehken, R.; Leggewie, M.; Badusche, M.; Pluskota, B.; Becker, N.; Vapalahti, O.; Schmidt-Chanasit, J.; Tannich, E. (2017)
    Mosquitoes collected in Germany in 2016, including Culex pipiens pipiens biotype pipiens, Culex torrentium and Aedes albopictus, as well as Culex pipiens pipiens biotype molestus (in colony since 2011) were experimentally infected with Zika virus (ZIKV) at 18 degrees C or 27 degrees C. None of the Culex taxa showed vector competence for ZIKV. In contrast, Aedes albopictus were susceptible for ZIKV but only at 27 degrees C, with transmission rates similar to an Aedes aegypti laboratory colony tested in parallel.
  • Uusitalo, Ruut; Siljander, Mika; Culverwell, C. Lorna; Hendrickx, Guy; Linden, Andreas; Dub, Timothee; Aalto, Juha; Sane, Jussi; Marsboom, Cedric; Suvanto, Maija T.; Vajda, Andrea; Gregow, Hilppa; Korhonen, Essi M.; Huhtamo, Eili; Pellikka, Petri; Vapalahti, Olli (2021)
    Pogosta disease is a mosquito-borne infection, caused by Sindbis virus (SINV), which causes epidemics of febrile rash and arthritis in Northern Europe and South Africa. Resident grouse and migratory birds play a significant role as amplifying hosts and various mosquito species, including Aedes cinereus, Culex pipiens, Cx. torrentium and Culiseta morsitans are documented vectors. As specific treatments are not available for SINV infections, and joint symptoms may persist, the public health burden is considerable in endemic areas. To predict the environmental suitability for SINV infections in Finland, we applied a suite of geospatial and statistical modeling techniques to disease occurrence data. Using an ensemble approach, we first produced environmental suitability maps for potential SINV vectors in Finland. These suitability maps were then combined with grouse densities and environmental data to identify the influential determinants for SINV infections and to predict the risk of Pogosta disease in Finnish municipalities. Our predictions suggest that both the environmental suitability for vectors and the high risk of Pogosta disease are focused in geographically restricted areas. This provides evidence that the presence of both SINV vector species and grouse densities can predict the occurrence of the disease. The results support material for public-health officials when determining area-specific recommendations and deliver information to health care personnel to raise awareness of the disease among physicians.
  • EFSA Panel Anim Hlth Welf EFSA AHA; Nielsen, Soren Saxmose; Sihvonen, Liisa Helena (2020)
    Effectiveness of surveillance and control measures against Rift Valley Fever (RVF) in Mayotte (overseas France) and in continental EU were assessed using mathematical models. Surveillance for early detection of RVF virus circulation implies very low design prevalence values and thus sampling a high number of animals, so feasibility issues may rise. Passive surveillance based on notified abortions in ruminants is key for early warning and at present the only feasible surveillance option. The assessment of vaccination and culling against RVF in Mayotte suggests that vaccination is more effective when quickly implemented throughout the population, e.g. at a rate of 200 or 2,000 animals vaccinated per day. Test and cull is not an option for RVF control in Mayotte given the high number of animals that would need to be tested. If the risk of RVFV introduction into the continental EU increases, ruminant establishments close to possible points of disease incursion should be included in the surveillance. An enhanced surveillance on reproductive disorders should be applied during summer in risk areas. Serosurveillance targets of 0.3% animals should be at least considered. RVF control measures possibly applied in the continental EU have been assessed in the Netherlands, as an example. Culling animals on farms within a 20 km radius of detected farms appears as the most effective measure to control RVF spread, although too many animals should be culled. Alternative measures are vaccination in a 50 km radius around detection, ring vaccination between 20 and 50 km and culling of detected farms. The assessment of zoning showed that, following RVFV introduction and considering an R-0 = 2, a mean vector dispersal of 10 km and 10 farms initially detected, RVFV would spread beyond a radius of up to 100 km or 50 km from the infected area with 10% or 55% probability, respectively. (C) 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.
  • EFSA Panel Anim Hlth Welf AHAW; Nielsen, Soren Saxmose (2020)
    Rift Valley fever (RVF) is a vector-borne disease transmitted by different mosquito species, especially Aedes and Culex genus, to animals and humans. In November 2018, RVF re-emerged in Mayotte (France) after 11 years. Up to the end of October 2019, 126 outbreaks in animals and 143 human cases were reported. RVF mortality was 0.01%, and the number of abortions reported in polymerase chain reaction (PCR)-positive ruminants was fivefold greater than the previous 7 years. Milk loss production in 2019 compared to 2015-2018 was estimated to be 18%, corresponding to an economic loss of around Euro191,000 in all of Mayotte. The tropical climate in Mayotte provides conditions for the presence of mosquitoes during the whole year, and illegal introductions of animals represent a continuous risk of (re)introduction of RVF. The probability of RVF virus (RVFV) persisting in Mayotte for 5 or more years was estimated to be <10% but could be much lower if vertical transmission in vectors does not occur. Persistence of RVF by vertical transmission in Mayotte and Reunion appears to be of minor relevance compared to other pathways of re-introduction (i.e. animal movement). However, there is a high uncertainty since there is limited information about the vertical transmission of some of the major species of vectors of RVFV in Mayotte and Reunion. The only identified pathways for the risk of spread of RVF from Mayotte to other countries were by infected vectors transported in airplanes or by wind currents. For the former, the risk of introduction of RVF to continental France was estimated to 4 x 10(-6) epidemic per year (median value; 95% CI: 2 x 10(-8); 0.0007), and 0.001 epidemic per year to Reunion (95% CI: 4 x 10(-6); 0.16). For the latter pathway, mosquitoes dispersing on the wind from Mayotte between January and April 2019 could have reached the Comoros Islands, Madagascar, Mozambique and, possibly, Tanzania. However, these countries are already endemic for RVF, and an incursion of RVFV-infected mosquitoes would have negligible impact. (c) 2020 European Food Safety Authority. EFSA Journal published by John Wiley and Sons Ltd on behalf of European Food Safety Authority.