Browsing by Subject "CYANOBACTERIA BLOOMS"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Jokinen, Sami; Virtasalo, Joonas J.; Jilbert, Tom; Kaiser, Jerome; Dellwig, Olaf; Arz, Helge W.; Hänninen, Jari; Arppe, Laura; Collander, Miia; Saarinen, Timo (2018)
    The anthropogenically forced expansion of coastal hypoxia is a major environmental problem affecting coastal ecosystems and biogeochemical cycles throughout the world. The Baltic Sea is a semi-enclosed shelf sea whose central deep basins have been highly prone to deoxygenation during its Holocene history, as shown previously by numerous paleoenvironmental studies. However, long-term data on past fluctuations in the intensity of hypoxia in the coastal zone of the Baltic Sea are largely lacking, despite the significant role of these areas in retaining nutrients derived from the catchment. Here we present a 1500-year multiproxy record of near-bottom water redox changes from the coastal zone of the northern Baltic Sea, encompassing the climatic phases of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA), and the Modern Warm Period (MoWP). Our reconstruction shows that although multicentennial climate variability has modulated the depositional conditions and delivery of organic matter (OM) to the basin the modern aggravation of coastal hypoxia is unprecedented and, in addition to gradual changes in the basin configuration, it must have been forced by excess human-induced nutrient loading. Alongside the anthropogenic nutrient input, the progressive deoxygenation since the beginning of the 1900s was fueled by the combined effects of gradual shoaling of the basin and warming climate, which amplified sediment focusing and increased the vulnerability to hypoxia. Importantly, the eutrophication of coastal waters in our study area began decades earlier than previously thought, leading to a marked aggravation of hypoxia in the 1950s. We find no evidence of similar anthropogenic forcing during the MCA. These results have implications for the assessment of reference conditions for coastal water quality. Furthermore, this study highlights the need for combined use of sedimentological, ichnological, and geochemical proxies in order to robustly reconstruct subtle redox shifts especially in dynamic, non-euxinic coastal settings with strong seasonal contrasts in the bottom water quality.
  • McCrackin, Michelle L.; Muller-Karulis, Baerbel; Gustafsson, Bo G.; Howarth, Robert W.; Humborg, Christoph; Svanbäck, Annika; Swaney, Dennis P. (2018)
    There is growing evidence that the release of phosphorus (P) from legacy stores can frustrate efforts to reduce P loading to surface water from sources such as agriculture and human sewage. Less is known, however, about the magnitude and residence times of these legacy pools. Here we constructed a budget of net anthropogenic P inputs to the Baltic Sea drainage basin and developed a three-parameter, two-box model to describe the movement of anthropogenic P though temporary (mobile) and long-term (stable) storage pools. Phosphorus entered the sea as direct coastal effluent discharge and via rapid transport and slow, legacy pathways. The model reproduced past waterborne P loads and suggested an similar to 30-year residence time in the mobile pool. Between 1900 and 2013, 17 and 27 Mt P has accumulated in the mobile and stable pools, respectively. Phosphorus inputs to the sea have halved since the 1980s due to improvements in coastal sewage treatment and reductions associated with the rapid transport pathway. After decades of accumulation, the system appears to have shifted to a depletion phase; absent further reductions in net anthropogenic P input, future waterborne loads could decrease. Presently, losses from the mobile pool contribute nearly half of P loads, suggesting that it will be difficult to achieve substantial near-term reductions. However, there is still potential to make progress toward eutrophication management goals by addressing rapid transport pathways, such as overland flow, as well as mobile stores, such as cropland with large soil-P reserves.
  • Ning, Wenxin; Nielsen, Anne Birgitte; Norbäck Ivarsson, Lena; Jilbert, Thomas Stephen; Åkesson, Christine; Slomp, Caroline P.; Andren, Elinor; Broström, Anne; Filipsson, Helena L. (2018)
    Coastal environments have experienced large ecological changes as a result of human activities over the last 100-200 years. To understand the severity and potential consequences of such changes, paleoenvironmental records provide important contextual information. The Baltic Sea coastal zone is naturally a vulnerable system and subject to significant human-induced impacts. To put the recent environmental degradation in the Baltic coastal zone into a long-term perspective, and to assess the natural and anthropogenic drivers of environmental change, we present sedimentary records covering the last 1000 years obtained from a coastal inlet (Gasfjarden) and a nearby lake (Lake Storsjon) in Sweden. We investigate the links between a pollen-based land cover reconstruction from Lake Storsjon and paleoenvironmental variables from Gasfjarden itself, including diatom assemblages, organic carbon (C) and nitrogen (N) contents, stable C and N isotopic ratios, and biogenic silica contents. The Lake Storsjon record shows that regional land use was characterized by small-scale agricultural activity between 900 and 1400 CE, which slightly intensified between 1400 and 1800 CE. Substantial expansion of cropland was observed between 1800 and 1950 CE, before afforestation between 1950 and 2010 CE. From the Gasfjarden record, prior to 1800 CE, relatively minor changes in the diatom and geochemical proxies were found. The onset of cultural eutrophication in Gasfjarden can be traced to the 1800s and intensified land use is identified as the main driver. Anthropogenic activities in the 20th century have caused unprecedented ecosystem changes in the coastal inlet, as reflected in the diatom composition and geochemical proxies. (c) 2018 Elsevier Ltd. All rights reserved.
  • Carstensen, Jacob; Conley, Daniel J.; Bonsdorff, Erik; Gustafsson, Bo G.; Hietanen, Susanna; Janas, Urzsula; Jilbert, Tom; Maximov, Alexey; Norkko, Alf; Norkko, Joanna; Reed, Daniel C.; Slomp, Caroline P.; Timmermann, Karen; Voss, Maren (2014)
  • Jilbert, Tom; Gustafsson, Bo G.; Veldhuijzen, Simon; Reed, Daniel C.; Helmond, Niels A. G. M.; Hermans, Martijn; Slomp, Caroline P. (2021)
    Hypoxia has occurred intermittently in the Baltic Sea since the establishment of brackish-water conditions at similar to 8,000 years B.P., principally as recurrent hypoxic events during the Holocene Thermal Maximum (HTM) and the Medieval Climate Anomaly (MCA). Sedimentary phosphorus release has been implicated as a key driver of these events, but previous paleoenvironmental reconstructions have lacked the sampling resolution to investigate feedbacks in past iron-phosphorus cycling on short timescales. Here we employ Laser Ablation (LA)-ICP-MS scanning of sediment cores to generate ultra-high resolution geochemical records of past hypoxic events. We show that in-phase multidecadal oscillations in hypoxia intensity and iron-phosphorus cycling occurred throughout these events. Using a box model, we demonstrate that such oscillations were likely driven by instabilities in the dynamics of iron-phosphorus cycling under preindustrial phosphorus loads, and modulated by external climate forcing. Oscillatory behavior could complicate the recovery from hypoxia during future trajectories of external loading reductions.