Browsing by Subject "Cardiovascular magnetic resonance"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Tarkiainen, Mika; Sipola, Petri; Jalanko, Mikko; Helio, Tiina; Laine , Mika; Jarvinen, Vesa; Hayrinen, Kaisu; Lauerma, Kirsi; Kuusisto, Johanna (2016)
    Background: Previous data suggest that mitral valve leaflets are elongated in hypertrophic cardiomyopathy (HCM), and mitral valve leaflet elongation may constitute a primary phenotypic expression of HCM. Our objective was to measure the length of mitral valve leaflets by cardiovascular magnetic resonance (CMR) in subjects with HCM caused by a Finnish founder mutation in the myosin-binding protein C gene (MYBPC3-Q1061X), carriers of the same mutation without left ventricular hypertrophy, as well as in unselected consecutive patients with HCM, and respective controls. Methods: Anterior mitral valve leaflet (AML) and posterior mitral valve leaflet (PML) lengths were measured by CMR in 47 subjects with the Q1061X mutation in the gene encoding MYBPC3 and in 20 healthy relatives without the mutation. In addition, mitral valve leaflet lengths were measured by CMR in 80 consecutive non-genotyped patients with HCM in CMR and 71 age-and gender-matched healthy subjects. Results: Of the subjects with the MYBPC-Q1016X mutation, 32 had left ventricular hypertrophy (LVH, LV maximal wall thickness >= 13 mm in CMR) and 15 had no hypertrophy. PML was longer in patients with the MYBPC3-Q1061X mutation and LVH than in controls of the MYBPC group (12.8 +/- 2.8 vs 10.6 +/- 1.9 mm, P = 0.013), but the difference between the groups was not statistically significant when PML was indexed for BSA (P = 0.066), or when PML length was adjusted for BSA, age, gender, LV mass and ejection fraction (P = 0.195). There was no significant difference in the PML length in mutation carriers without LVH and controls (11.1 +/- 3.4 vs 10.6 +/- 1.9, P = 0.52). We found no difference in AML lengths between the MYBPC mutation carriers with or without hypertrophy and controls. In 80 consecutive non-genotyped patients with HCM, there was no difference either in AML or PML lengths in subjects with HCM compared to respective control subjects. Conclusions: In subjects with HCM caused by the Q1061X mutation in the MYBPC3 gene, the posterior mitral valve leaflets may be elongated, but mitral valve elongation does not constitute primary phenotypic expression of the disease. Instead, elongated mitral valve leaflets seem to be associated with body size and left ventricular remodeling.
  • Nyman, K.; Granér, M.; Pentikäinen, M.O.; Lundbom, J.; Hakkarainen, A.; Sirén, R.; Nieminen, M.S.; Taskinen, M.-R.; Lundbom, N.; Lauerma, K. (2018)
    Background and aims: Obesity and metabolic syndrome (MetS) are risk factors of atrial fibrillation (AF), but limited data exist on their effect on left atrial (LA) function. The aim of the study was to evaluate the effects of cardiac, hepatic and intra-abdominal ectopic fat depots and cardiometabolic risk factors on LA function in non-diabetic male subjects. Methods and results: Myocardial and hepatic triglyceride contents were measured with 1.5T H-1-magnetic resonance spectroscopy and LA and left ventricular function, visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), epicardial and pericardial fat by magnetic resonance imaging (MRI) in 33 men with MetS and 40 men without MetS. LA volumes were assessed using a novel three-chamber orientation based MRI approach. LA ejection fraction (EF) was lower in MetS patients than in the control group (44 +/- 7.7% in MetS vs. 49 +/- 8.6% in controls, p = 0.013) without LA enlargement, indicating LA dysfunction. LA EF correlated negatively with waist circumference, body mass index, SAT, VAT, fasting serum insulin, and homeostasis model assessment of insulin resistance index, and positively with fasting serum high-density lipoprotein cholesterol. VAT was the best predictor of reduced LA EF. Conclusions: MetS associates with subclinical LA dysfunction. Multiple components of MetS are related to LA dysfunction, notably visceral obesity and insulin resistance. Further studies are needed to elucidate the role of mechanical atrial remodeling in the development of AF. (C) 2018 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
  • Lehmonen, Lauri; Kaasalainen, Touko; Atula, Sari; Mustonen, Tuuli; Holmström, Miia (2019)
    Gelsolin (AGel) amyloidosis is a hereditary condition with common neurological effects. Myocardial involvement, especially strain, T1, or extracellular volume (ECV), in this disease has not been investigated before. Local myocardial effects and possible amyloid accumulation were the targets of interest in this study. Fifty patients with AGel amyloidosis were enrolled in the study. All patients underwent cardiovascular magnetic resonance imaging, including cine imaging, T1 mapping, tagging, and late gadolinium enhancement (LGE) imaging at 1.5 T. Results for volumetry, myocardial feature-tracking strain, rotation, torsion, native T1, ECV, and LGE were investigated. The population mean native T1 values in different segments of the left ventricle (LV) varied between 1003 and 1080 ms. Myocardial mean T1 was 1031 ± 37 ms. T1 was highest in the basal plane of the LV (1055 ± 40 ms), similarly to ECV (30.0% ± 4.4%). ECV correlated with native T1 in all LV segments (p 
  • Pöyhönen, Pauli; Kylmälä, Minna; Vesterinen, Paula; Kivistö, Sari; Holmström, Miia; Lauerma, Kirsi; Väänänen, Heikki; Toivonen, Lauri; Hänninen, Helena (2018)
    Background: Large myocardial infarction (MI) is associated with adverse left ventricular (LV) remodeling (LVR). We studied the nature of LVR, with specific attention to non-transmural MIs, and the association of peak CK-MB with recovery and chronic phase scar size and LVR. Methods: Altogether 41 patients underwent prospectively repeated cardiovascular magnetic resonance at a median of 22 (interquartile range 9-29) days and 10 (8-16) months after the first revascularized MI. Transmural MI was defined as >= 75% enhancement in at least one myocardial segment. Results: Peak CK-MB was 86 (40-216) mu g/L in median, while recovery and chronic phase scar size were 13 (3-23) % and 8 (2-19) %. Altogether 33 patients (81%) had a non-transmural MI. Peak CK-MB had a strong correlation with recovery and chronic scar size (r >= 0.80 for all, r >= 0.74 for non-transmural MIs; p <0.001). Peak CK-MB, recovery scar size, and chronic scar size, were all strongly correlated with chronic wall motion abnormality index (WMAi) (r >= 0.75 for all, r >= 0.73 for non-transmural MIs; p <0.001). There was proportional scar size and LV mass resorption of 26% (0-50%) and 6% (-2-14%) in median. Young age (<60 years, median) was associated with greater LV mass resorption (median 9% vs. 1%, p = 0.007). Conclusions: Peak CK-MB has a strong association with chronic scar size and wall motion abnormalities after revascularized non-transmural MI. Considerable infarct resorption happens after the first-month recovery phase. LV mass resorption is related to age, being more common in younger patients.
  • Pöyhönen, Pauli; Kylmälä, Minna; Vesterinen, Paula; Kivistö, Sari; Holmström, Miia; Lauerma, Kirsi; Väänänen, Heikki; Toivonen, Lauri; Hänninen, Helena (BioMed Central, 2018)
    Abstract Background Large myocardial infarction (MI) is associated with adverse left ventricular (LV) remodeling (LVR). We studied the nature of LVR, with specific attention to non-transmural MIs, and the association of peak CK-MB with recovery and chronic phase scar size and LVR. Methods Altogether 41 patients underwent prospectively repeated cardiovascular magnetic resonance at a median of 22 (interquartile range 9–29) days and 10 (8–16) months after the first revascularized MI. Transmural MI was defined as ≥75% enhancement in at least one myocardial segment. Results Peak CK-MB was 86 (40–216) μg/L in median, while recovery and chronic phase scar size were 13 (3–23) % and 8 (2–19) %. Altogether 33 patients (81%) had a non-transmural MI. Peak CK-MB had a strong correlation with recovery and chronic scar size (r ≥ 0.80 for all, r ≥ 0.74 for non-transmural MIs; p < 0.001). Peak CK-MB, recovery scar size, and chronic scar size, were all strongly correlated with chronic wall motion abnormality index (WMAi) (r ≥ 0.75 for all, r ≥ 0.73 for non-transmural MIs; p < 0.001). There was proportional scar size and LV mass resorption of 26% (0–50%) and 6% (− 2–14%) in median. Young age (< 60 years, median) was associated with greater LV mass resorption (median 9%vs.1%, p = 0.007). Conclusions Peak CK-MB has a strong association with chronic scar size and wall motion abnormalities after revascularized non-transmural MI. Considerable infarct resorption happens after the first-month recovery phase. LV mass resorption is related to age, being more common in younger patients.
  • Halva, Reetta; Vaara, Satu M.; Peltonen, Juha; Kaasalainen, Touko T.; Holmström, Miia; Lommi, Jyri; Suihko, Satu; Rajala, Helena; Kylmälä, Minna; Kivistö, Sari; Syväranta, Suvi (2021)
    Background Aortic valve stenosis (AS) is the most prevalent valvular disease in the developed countries. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) is an emerging imaging technique, which has been suggested to improve the evaluation of AS severity compared to two-dimensional (2D) flow and transthoracic echocardiography (TTE). We investigated the reliability of CMR 2D flow and 4D flow techniques in measuring aortic transvalvular peak systolic flow in patients with severe AS. Methods We prospectively recruited 90 patients referred for aortic valve replacement due to severe AS (73.3 +/- 11.3 years, aortic valve area 0.7 +/- 0.1 cm(2), and 54/36 tricuspid/bicuspid), and 10 non-valvular disease controls. All the patients underwent echocardiography and 2D flow and 4D flow CMR. Peak flow velocity measurements were compared using Wilcoxon signed rank sum test and Bland-Altman analysis. Results 4D flow underestimated peak flow velocity in the AS group when compared with TTE (bias - 1.1 m/s, limits of agreement +/- 1.4 m/s) and 2D flow (bias - 1.2 m/s, limits of agreement +/- 1.6 m/s). The differences between values obtained by TTE (median 4.3 m/s, range 2.7-6.1 m/s) and 2D flow (median 4.5 m/s, range 2.9-6.5 m/s) compared to 4D flow (median 3.1 m/s, range 1.7-5.1 m/s) were significant (p < 0.001). The difference between 2D flow and TTE were insignificant (bias 0.07 m/s, limits of agreement +/- 1.5 m/s). In non-valvular disease controls, peak flow velocity was measured higher by 4D flow than 2D flow (1.4 m/s, 1.1-1.7 m/s and 1.3 m/s, 1.1-1.5 m/s, respectively; bias 0.2 m/s, limits of agreement +/- 0.16 m/s). Conclusions CMR 4D flow significantly underestimates systolic peak flow velocity in patients with severe AS. 2D flow, in turn, estimated the AS velocity accurately, with measured peak flow velocities comparable to TTE.
  • Lehmonen, Lauri; Jalanko, Mikko; Tarkiainen, Mika; Kaasalainen, Touko; Kuusisto, Johanna; Lauerma, Kirsi-Maria Susanna; Savolainen, Sauli (2020)
    Background Left ventricle rotation and torsion are fundamental components of myocardial function, and several software packages have been developed for analysis of these components. The purpose of this study was to compare the suitability of two software packages with different technical principles for analysis of rotation and torsion of the left ventricle during systole. Methods A group of hypertrophic cardiomyopathy (HCM) patients (N = 14, age 43 +/- 11 years), mutation carriers without hypertrophy (N = 10, age 34 +/- 13 years), and healthy relatives (N = 12, age 43 +/- 17 years) underwent a cardiovascular magnetic resonance examination, including spatial modulation of magnetization tagging sequences in basal and apical planes of the left ventricle. The tagging images were analyzed offline using a harmonic phase image analysis method with Gabor filtering and a non-rigid registration-based free-form deformation technique. Left-ventricle rotation and torsion scores were obtained from end-diastole to end-systole with both software. Results Analysis was successful in all cases with both software applications. End-systolic torsion values between the study groups were not statistically different with either software. End-systolic apical rotation, end-systolic basal rotation, and end-systolic torsion were consistently higher when analyzed with non-rigid registration than with harmonic phase-based analysis (p <0.0001). End-systolic rotation and torsion values had significant correlations between the two software (p <0.0001), most significant in the apical plane. Conclusions When comparing absolute values of rotation and torsion between different individuals, software-specific reference values are required. Harmonic phase flow with Gabor filtering and non-rigid registration-based methods can both be used reliably in the analysis of systolic rotation and torsion patterns of the left ventricle.
  • Lehmonen, Lauri; Jalanko, Mikko; Tarkiainen, Mika; Kaasalainen, Touko; Kuusisto, Johanna; Lauerma, Kirsi; Savolainen, Sauli (BioMed Central, 2020)
    Abstract Background Left ventricle rotation and torsion are fundamental components of myocardial function, and several software packages have been developed for analysis of these components. The purpose of this study was to compare the suitability of two software packages with different technical principles for analysis of rotation and torsion of the left ventricle during systole. Methods A group of hypertrophic cardiomyopathy (HCM) patients (N = 14, age 43 ± 11 years), mutation carriers without hypertrophy (N = 10, age 34 ± 13 years), and healthy relatives (N = 12, age 43 ± 17 years) underwent a cardiovascular magnetic resonance examination, including spatial modulation of magnetization tagging sequences in basal and apical planes of the left ventricle. The tagging images were analyzed offline using a harmonic phase image analysis method with Gabor filtering and a non-rigid registration-based free-form deformation technique. Left-ventricle rotation and torsion scores were obtained from end-diastole to end-systole with both software. Results Analysis was successful in all cases with both software applications. End-systolic torsion values between the study groups were not statistically different with either software. End-systolic apical rotation, end-systolic basal rotation, and end-systolic torsion were consistently higher when analyzed with non-rigid registration than with harmonic phase-based analysis (p <  0.0001). End-systolic rotation and torsion values had significant correlations between the two software (p <  0.0001), most significant in the apical plane. Conclusions When comparing absolute values of rotation and torsion between different individuals, software-specific reference values are required. Harmonic phase flow with Gabor filtering and non-rigid registration-based methods can both be used reliably in the analysis of systolic rotation and torsion patterns of the left ventricle.
  • Ylitalo, Pekka; Lehmonen, Lauri; Lauerma, Kirsi; Holmström, Miia; Pitkänen-Argillander, Olli; Jokinen, Eero (2020)
    Postoperative patients with tetralogy of Fallot (TOF) are often compromised by chronic pulmonary regurgitation and chronic right ventricular volume load. We sought to determine whether pulmonary regurgitation (PR) would affect right and left ventricle (RV and LV) strain.