Browsing by Subject "Cesium"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Lehto, Jukka; Puukko, Esa; Lindberg, Antero; Voutilainen, Mikko (2019)
    The distribution coefficient (Kd) of radionuclides on bedrock is one of the key parameters used in the safety analysis of spent nuclear fuel repositories. Typically, distribution coefficients have been determined using crushed rock. However, recent studies have shown that crushing of the rock increases considerably the distribution coefficient compared with the values of intact rock. This study aimed to test if batch sorption experiments using different grain sizes (i.e. mean diameter of grains) can be used to evaluate the Kd of strontium (Sr) and cesium (Cs) on intact crystalline rock, which would decrease the needed experimental time compared with transport experiments. Here we report the results of the batch sorption experiments with crushed rocks and compare the results with those from a recent study performed using electromigration experiments with intact drill core samples (Puukko et al., 2018). The batch sorption experiments were done for rock samples from Olkiluoto, Finland, as a function of grain size and of Cs and Sr concentration. Furthermore, the specific surface areas of the same rock samples with different grain sizes were determined. It was shown that Cs distribution coefficients correlate with specific surface areas of the studied rocks and biotite, the correlation coefficient being 0.95. The Cs distribution coefficient was highest for biotite at about 0.1 m3/kg at 10−4 M cesium concentration and increased systematically to about 1 m3/kg at 10−8 M. Distribution coefficients for rocks were up to about two orders of magnitude lower, being lowest with the rock with the lowest biotite content (3.3%). The distribution coefficient of Sr varied from 0.04 m3/kg to 0.007 m3/kg and behaved in a different manner: it remained constant in two out of three studied rocks in the concentration range of 10−8-10−4 M and only in the case of one rock a decreasing trend was seen at the higher concentration range. It was also shown that batch sorption experiments overestimate the distribution coefficient in respect to intact rock. The decrease of the distribution coefficient as a function of grain size can be estimated using a power law function. It was also shown that estimation of distribution coefficients of Cs and Sr for intact rock by extrapolation of distribution coefficients determined for different grain sizes is not possible without increasing grain size, but in that case diffusion into the grains would also affect the results. A new method was developed for estimating the fraction of the inner surface area of the total surface area of crushed grains. For the mean grain sizes of 0.25 mm and 0.75 mm the fraction of the inner surface was found to be 35–70% and 60–90%, respectively. The inner specific surface area was highest with biotite at 1.2 m2/g and lowest with the rock with lowest biotite content (3.3%) at 0.07 m2/g. The surface area analysis revealed that crushing creates and/or allows access to additional inner surface area that is not measured in intact rock. Furthermore, it was demonstrated that sorption of Cs on crushed rock was dominated by mica minerals in multiple concentrations while the effect of mica minerals on the Kd of Sr was not as straightforward.
  • Ray, Daisy; Leary, Peter; Livens, Francis; Gray, Neil; Morris, Katherine; Law, Kathleen A.; Fuller, Adam J.; Abrahamsen-Mills, Liam; Howe, John; Tierney, Kieran; Muir, Graham; Law, Gareth T.W. (2020)
    Understanding anthropogenic radionuclide biogeochemistry and mobility in natural systems is key to improving the management of radioactively contaminated environments and radioactive wastes. Here, we describe the contemporary depth distribution and phase partitioning of 137Cs, Pu, and 241Am in two sediment cores taken from the Irish Sea (Site 1: the Irish Sea Mudpatch; Site 2: the Esk Estuary). Both sites are located ~10 km from the Sellafield nuclear site. Low-level aqueous radioactive waste has been discharged from the Sellafield site into the Irish Sea for >50 y. We compare the depth distribution of the radionuclides at each site to trends in sediment and porewater redox chemistry, using trace element abundance, microbial ecology, and sequential extractions, to better understand the relative importance of sediment biogeochemistry vs. physical controls on radionuclide distribution/post-depositional mobility in the sediments. We highlight that the distribution of 137Cs, Pu, and 241Am at both sites is largely controlled by physical mixing of the sediments, physical transport processes, and sediment accumulation. Interestingly, at the Esk Estuary, microbially-mediated redox processes (considered for Pu) do not appear to offer significant controls on Pu distribution, even over decadal timescales. We also highlight that the Irish Sea Mudpatch likely still acts as a source of historical pollution to other areas in the Irish Sea, despite ever decreasing levels of waste output from the Sellafield site.