Browsing by Subject "Chemistry education"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Vesterinen, Veli-Matti; Aksela, Maija; Sundberg, Markku R. (2009)
    The aim of this study was to discover how current chemistry syllabi in the frame curricula for up- per secondary education in three Nordic countries (Finland, Norway, and Sweden) take into account topics related to the nature of chemistry. By qualitative content analysis, the statements related to the nature of chemistry were divided into categories. Conclusions and implications for improving the frame curricula under study were made by comparing results with research into the nature of science. Chemistry syllabi from the Nordic frame curricula analyzed take into account the aims related to the nature of chemistry in a very similar manner. The ideas that should be made more explicit in all of the analyzed curricula are: i) the limits of the chemical models and theories, ii) the relationship between chemistry and other natural sciences, iii) the importance of creativity in chemical research, iv) the concepts of evidence in science texts, v) the social nature of chemical research, and vi) chemistry as a technological practice.
  • Vesterinen, Veli-Matti (Helsingin yliopisto, 2012)
    Dissertations of the Unit of Chemistry Teacher Education
    Nature of science (NOS) describes what science is, how it works, how scientists operate, and the interaction between science and society. As a crucial element of scientific literacy, knowledge about NOS is widely recognized as one of the key aims of chemistry education. To enhance students understanding of NOS, teachers need adequate understanding of NOS as well as sufficient pedagogical content knowledge related to NOS for translating their understanding of NOS into classroom practice. This thesis reports an educational design research project on the design and development of a pre-service chemistry teacher education course on NOS instruction. Educational design research is the systematic study of the design and development of educational interventions for addressing complex educational problems. It advances the knowledge about the characteristics of designed interventions and the processes of design and development. The thesis consists of four interconnected studies and documents two iterative design research cycles of problem analysis, design, implementation, and evaluation. The first two studies describe how NOS is presented in the national frame curricula and upper secondary school chemistry textbooks. These studies provide a quantitative method for analysis of representations of NOS in chemistry textbooks and curricula, as well as describe the components of domain-specific NOS for chemistry education. The other two studies document the design, development, and evaluation of the goals and instructional practices used on the course. Four design solutions were produced: (i) description of central dimensions of domain-specific NOS for chemistry education, (ii) research group visits to prevent the diluting of relevance to science content and research, (iii) a teaching cycle for explicit and structured opportunities for reflection and discussion, and (iv) collaborative design assignments for translating NOS understanding into classroom practice. The evaluations of the practicality and effectiveness of the design solutions are based on the reflective essays and interviews of the pre-service teachers, which were collected during the course, as well as on the four in-depth interviews of selected participants, collected a year after they had graduated as qualified teachers. The results suggest that one critical factor influencing pre-service chemistry teachers commitment to teach NOS was the possibility to implement NOS instruction during the course. Thus, the use of collaborative peer teaching and integrating student teaching on NOS instruction courses is suggested as a strategy to support the development of the attitudes, beliefs, and skills necessary for teaching NOS. And even though the outside forces of school culture (e.g. school community, curriculum, textbooks) tend to constrain rather than support novice teachers efforts to implement new practices, the results also demonstrate that a pre-service teacher education course can be successful in producing innovators or early adopters of NOS instruction. Thus it might be one of the first steps in the challenging task of injecting NOS instruction into the chemistry curriculum for enhancing students understanding of NOS and strengthening their scientific literacy.