Browsing by Subject "Contamination"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Emameh, Reza Zolfaghari; Kuuslahti, Marianne; Nosrati, Hassan; Lohi, Hannes; Parkkila, Seppo (2020)
    BackgroundThe inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all unicellular and multicellular living organisms. Among the eight distinct families of CAs, including alpha, beta, gamma, delta, zeta, eta, theta, and iota, only alpha -CAs have been reported in vertebrates.ResultsBy an in silico analysis performed on the NCBI and Ensembl databases, we identified several beta- and gamma -CA sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii, Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus. Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive beta- or gamma -CA gene sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology searches of the database-derived "vertebrate" beta- and gamma -CA sequences revealed that the identified sequences were presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems.ConclusionsOur results highlight the need for more accurate and fast curation systems for DNA databases. The mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA data for publication.
  • Zolfaghari Emameh, Reza; Kuuslahti, Marianne; Nosrati, Hassan; Lohi, Hannes; Parkkila, Seppo (BioMed Central, 2020)
    Abstract Background The inaccuracy of DNA sequence data is becoming a serious problem, as the amount of molecular data is multiplying rapidly and expectations are high for big data to revolutionize life sciences and health care. In this study, we investigated the accuracy of DNA sequence data from commonly used databases using carbonic anhydrase (CA) gene sequences as generic targets. CAs are ancient metalloenzymes that are present in all unicellular and multicellular living organisms. Among the eight distinct families of CAs, including α, β, γ, δ, ζ, η, θ, and ι, only α-CAs have been reported in vertebrates. Results By an in silico analysis performed on the NCBI and Ensembl databases, we identified several β- and γ-CA sequences in vertebrates, including Homo sapiens, Mus musculus, Felis catus, Lipotes vexillifer, Pantholops hodgsonii, Hippocampus comes, Hucho hucho, Oncorhynchus tshawytscha, Xenopus tropicalis, and Rhinolophus sinicus. Polymerase chain reaction (PCR) analysis of genomic DNA persistently failed to amplify positive β- or γ-CA gene sequences when Mus musculus and Felis catus DNA samples were used as templates. Further BLAST homology searches of the database-derived “vertebrate” β- and γ-CA sequences revealed that the identified sequences were presumably derived from gut microbiota, environmental microbiomes, or grassland ecosystems. Conclusions Our results highlight the need for more accurate and fast curation systems for DNA databases. The mined data must be carefully reconciled with our best knowledge of sequences to improve the accuracy of DNA data for publication.
  • Björkroth, Johanna; Korkeala, Hannu (International Association for Food Protection, 1996)
    Contamination of sliced cooked meat products with a Lactobacillus sake starter strain was suspected to cause spoilage in the products before the end of the expected shelf life. Slicing and vacuum packaging of the cooked products was done in the room in which the fermented product was handled. Since L. sake strains are known to be a dominant part of spoilage microflora associated with vacuum-pack-aged meat products, a contamination study was performed. One hundred and eighteen strains were isolated from 6 spoiled vacuum packaged meat products and from the surfaces of the packaging room and adjac-ent refrigerators. DNA was isolated from these strains and cleaved using Eco RI and Hind III restriction endonucleases to obtain characteristic ribotypes. Corresponding ribotypes of the L. sake starter strain were compared to the 14 different patterns obtained from the strains growing in spoiled products and on surfaces by Eco RI digestions. The L. sake starter strain was shown to contaminate the packaging room and it was also isolated from one of the products. However, it was not a dominant strain in this product and it could not be linked to the other products. Our results indicated that handling the fermented product in the refrigerating and packaging rooms together with cooked products was not the major cause of spoilage in these products.
  • Morin, Alexander M.; Gatev, Evan; McEwen, Lisa M.; MacIsaac, Julia L.; Lin, David T. S.; Koen, Nastassja; Czamara, Darina; Räikkönen, Katri; Zar, Heather J.; Koenen, Karestan; Stein, Dan J.; Kobor, Michael S.; Jones, Meaghan J. (2017)
    Background: Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Results: Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Conclusions: Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.
  • Morin, Alexander M; Gatev, Evan; McEwen, Lisa M; MacIsaac, Julia L; Lin, David T S; Koen, Nastassja; Czamara, Darina; Räikkönen, Katri; Zar, Heather J; Koenen, Karestan; Stein, Dan J; Kobor, Michael S; Jones, Meaghan J (BioMed Central, 2017)
    Abstract Background Cord blood is a commonly used tissue in environmental, genetic, and epigenetic population studies due to its ready availability and potential to inform on a sensitive period of human development. However, the introduction of maternal blood during labor or cross-contamination during sample collection may complicate downstream analyses. After discovering maternal contamination of cord blood in a cohort study of 150 neonates using Illumina 450K DNA methylation (DNAm) data, we used a combination of linear regression and random forest machine learning to create a DNAm-based screening method. We identified a panel of DNAm sites that could discriminate between contaminated and non-contaminated samples, then designed pyrosequencing assays to pre-screen DNA prior to being assayed on an array. Results Maternal contamination of cord blood was initially identified by unusual X chromosome DNA methylation patterns in 17 males. We utilized our DNAm panel to detect contaminated male samples and a proportional amount of female samples in the same cohort. We validated our DNAm screening method on an additional 189 sample cohort using both pyrosequencing and DNAm arrays, as well as 9 publically available cord blood 450K data sets. The rate of contamination varied from 0 to 10% within these studies, likely related to collection specific methods. Conclusions Maternal blood can contaminate cord blood during sample collection at appreciable levels across multiple studies. We have identified a panel of markers that can be used to identify this contamination, either post hoc after DNAm arrays have been completed, or in advance using a targeted technique like pyrosequencing.
  • Stsepetova, Jelena; Baranova, Juliana; Simm, Jaak; Parm, Ulle; Rööp, Tiiu; Sokmann, Sandra; Korrovits, Paul; Jaagura, Madis; Rosenstein, Karin; Salumets, Andres; Mandar, Reet (2020)
    Background Only a few microbial studies have conducted in IVF (in vitro fertilization), showing the high-variety bacterial contamination of IVF culture media to cause damage to or even loss of cultured oocytes and embryos. We aimed to determine the prevalence and counts of bacteria in IVF samples, and to associate them with clinical outcome. Methods The studied samples from 50 infertile couples included: raw (n = 48), processed (n = 49) and incubated (n = 50) sperm samples, and IVF culture media (n = 50). The full microbiome was analyzed by 454 pyrosequencing and quantitative analysis by real-time quantitative PCR. Descriptive statistics, t-, Mann-Whitney tests and Spearman's correlation were used for comparison of studied groups. Results The study involved normozoospermic men. Normal vaginal microbiota was present in 72.0% of female partners, while intermediate microbiota and bacterial vaginosis were diagnosed in 12.0 and 16.0%, respectively. The decreasing bacterial loads were found in raw (35.5%), processed (12.0%) and sperm samples used for oocyte insemination (4.0%), and in 8.0% of IVF culture media. The most abundant genera of bacteria in native semen and IVF culture media were Lactobacillus, while in other samples Alphaproteobacteria prevailed. Staphylococcus sp. was found only in semen from patients with inflammation. Phylum Bacteroidetes was in negative correlation with sperm motility and Alphaproteobacteria with high-quality IVF embryos. Conclusion Our study demonstrates that IVF does not occur in a sterile environment. The prevalent bacteria include classes Bacilli in raw semen and IVF culture media, Clostridia in processed and Bacteroidia in sperm samples used for insemination. The presence of Staphylococcus sp. and Alphaproteobacteria associated with clinical outcomes, like sperm and embryo quality.
  • Štšepetova, Jelena; Baranova, Juliana; Simm, Jaak; Parm, Ülle; Rööp, Tiiu; Sokmann, Sandra; Korrovits, Paul; Jaagura, Madis; Rosenstein, Karin; Salumets, Andres; Mändar, Reet (BioMed Central, 2020)
    Abstract Background Only a few microbial studies have conducted in IVF (in vitro fertilization), showing the high-variety bacterial contamination of IVF culture media to cause damage to or even loss of cultured oocytes and embryos. We aimed to determine the prevalence and counts of bacteria in IVF samples, and to associate them with clinical outcome. Methods The studied samples from 50 infertile couples included: raw (n = 48), processed (n = 49) and incubated (n = 50) sperm samples, and IVF culture media (n = 50). The full microbiome was analyzed by 454 pyrosequencing and quantitative analysis by real-time quantitative PCR. Descriptive statistics, t-, Mann-Whitney tests and Spearman’s correlation were used for comparison of studied groups. Results The study involved normozoospermic men. Normal vaginal microbiota was present in 72.0% of female partners, while intermediate microbiota and bacterial vaginosis were diagnosed in 12.0 and 16.0%, respectively. The decreasing bacterial loads were found in raw (35.5%), processed (12.0%) and sperm samples used for oocyte insemination (4.0%), and in 8.0% of IVF culture media. The most abundant genera of bacteria in native semen and IVF culture media were Lactobacillus, while in other samples Alphaproteobacteria prevailed. Staphylococcus sp. was found only in semen from patients with inflammation. Phylum Bacteroidetes was in negative correlation with sperm motility and Alphaproteobacteria with high-quality IVF embryos. Conclusion Our study demonstrates that IVF does not occur in a sterile environment. The prevalent bacteria include classes Bacilli in raw semen and IVF culture media, Clostridia in processed and Bacteroidia in sperm samples used for insemination. The presence of Staphylococcus sp. and Alphaproteobacteria associated with clinical outcomes, like sperm and embryo quality.