Browsing by Subject "Corticomuscular coherence"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Aikio, R.; Laaksonen, K.; Sairanen, A; Parkkonen, E.; Abou Elseoud, A.; Kujala, J.; Forss, N. (2021)
    In healthy subjects, motor cortex activity and electromyographic (EMG) signals from contracting contralateral muscle show coherence in the beta (15-30 Hz) range. Corticomuscular coherence (CMC) is considered a sign of functional coupling between muscle and brain. Based on prior studies, CMC is altered in stroke, but functional significance of this finding has remained unclear. Here, we examined CMC in acute stroke patients and correlated the results with clinical outcome measures and corticospinal tract (CST) integrity estimated with diffusion tensor imaging (DTI). During isometric contraction of the extensor carpi radialis muscle, EMG and magneto encephalographic oscillatory signals were recorded from 29 patients with paresis of the upper extremity due to ischemic stroke and 22 control subjects. CMC amplitudes and peak frequencies at 13-30 Hz were compared between the two groups. In the patients, the peak frequency in both the affected and the unaffected hemisphere was significantly (p < 0.01) lower and the strength of CMC was significantly (p < 0.05) weaker in the affected hemisphere compared to the control subjects. The strength of CMC in the patients correlated with the level of tactile sensitivity and clinical test results of hand function. In contrast, no correlation between measures of CST integrity and CMC was found. The results confirm the earlier findings that CMC is altered in acute stroke and demonstrate that CMC is bidirectional and not solely a measure of integrity of the efferent corticospinal tract.
  • Pitkanen, Minna; ShogoYazawa; Airaksinen, Katja; Lioumis, Pantelis; Nurminen, Jussi; Pekkonen, Eero; Makela, Jyrki P. (2019)
    The mapping of the sensorimotor cortex gives information about the cortical motor and sensory functions. Typical mapping methods are navigated transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG). The differences between these mapping methods are, however, not fully known. TMS center of gravities (CoGs), MEG somatosensory evoked fields (SEFs), corticomuscular coherence (CMC), and corticokinematic coherence (CKC) were mapped in ten healthy adults. TMS mapping was performed for first dorsal interosseous (FDI) and extensor carpi radialis (ECR) muscles. SEFs were induced by tactile stimulation of the index finger. CMC and CKC were determined as the coherence between MEG signals and the electromyography or accelerometer signals, respectively, during voluntary muscle activity. CMC was mapped during the activation of FDI and ECR muscles separately, whereas CKC was measured during the waving of the index finger at a rate of 3-4 Hz. The maximum CMC was found at beta frequency range, whereas maximum CKC was found at the movement frequency. The mean Euclidean distances between different localizations were within 20 mm. The smallest distance was found between TMS FDI and TMS ECR CoGs and longest between CMC FDI and CMC ECR sites. TMS-inferred localizations (CoGs) were less variable across participants than MEG-inferred localizations (CMC, CKC). On average, SEF locations were 8 mm lateral to the TMS CoGs (p <0.01). No differences between hemispheres were found. Based on the results, TMS appears to be more viable than MEG in locating motor cortical areas.