Browsing by Subject "Cosmology of Theories beyond the SM"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Heikinheimo, Matti; Huitu, Katri; Keus, Venus; Koivunen, Niko (2019)
    The Froggatt-Nielsen mechanism is a well-motivated framework for generating the fermion mass hierarchy. This mechanism introduces flavons, complex scalars which are singlet under the Standard Model gauge symmetry and charged under a new global family symmetry. We make use of a leptophilic flavon to produce the charged lepton Yukawa matrix. The real part of the flavon mixes with the Higgs boson and introduces lepton flavour violating interactions which are bounded by experiment. The imaginary part of the flavon, , is a long-lived light particle, whose abundance is restricted by cosmological observations. For m<2m(e) where the decay of to charged leptons is kinematically forbidden, we identify allowed regions of m with respect to the vacuum expectation value of the flavon field where all experimental and cosmological constraints are satisfied.
  • Cordero-Cid, A.; Hernandez-Sanchez, J.; Keus, V.; King, S. F.; Moretti, S.; Rojas, D.; Sokolowska, D. (2016)
    We study an extension of the Standard Model (SM) in which two copies of the SM scalar SU(2) doublet which do not acquire a Vacuum Expectation Value (VEV), and hence are inert, are added to the scalar sector. We allow for CP-violation in the inert sector, where the lightest inert state is protected from decaying to SM particles through the conservation of a Z(2) symmetry. The lightest neutral particle from the inert sector, which has a mixed CP-charge due to CP-violation, is hence a Dark Matter (DM) candidate. We discuss the new regions of DM relic density opened up by CP-violation, and compare our results to the CP-conserving limit and the Inert Doublet Model (IDM). We constrain the parameter space of the CP-violating model using recent results from the Large Hadron Collider (LHC) and DM direct and indirect detection experiments.
  • Enckell, Vera-Maria; Nurmi, Sami; Rasanen, Syksy; Tomberg, Eemeli (2021)
    We study Higgs inflation in the Palatini formulation with the renormalisation group improved potential in the case when loop corrections generate a feature similar to an inflection point. Assuming that there is a threshold correction for the Higgs quartic coupling lambda and the top Yukawa coupling y(t), we scan the three-dimensional parameter space formed by the two jumps and the non-minimal coupling xi .The spectral index n(s) can take any value in the observationally allowed range. The lower limit for the running is alpha (s)> -3.5 x 10(-3), and alpha (s) can be as large as the observational upper limit. Running of the running is small. The tensor-to-scalar ratio is 2.2x10(-17)< r < 2 x 10(-5). We find that slow-roll can be violated near the feature, and a possible period of ultra-slow-roll contributes to the widening of the range of CMB predictions. Nevertheless, for the simplest tree-level action, the Palatini formulation remains distinguishable from the metric formulation even when quantum corrections are taken into account, because of the small tensor-to-scalar ratio.
  • Ares, Feanor Reuben; Hindmarsh, Mark; Hoyos, Carlos; Jokela, Niko (2021)
    We investigate first order phase transitions in a holographic setting of five-dimensional Einstein gravity coupled to a scalar field, constructing phase diagrams of the dual field theory at finite temperature. We scan over the two-dimensional parameter space of a simple bottom-up model and map out important quantities for the phase transition: the region where first order phase transitions take place; the latent heat, the transition strength parameter alpha, and the stiffness. We find that alpha is generically in the range 0.1 to 0.3, and is strongly correlated with the stiffness (the square of the sound speed in a barotropic fluid). Using the LISA Cosmology Working Group gravitational wave power spectrum model corrected for kinetic energy suppression at large alpha and non-conformal stiffness, we outline the observational prospects at the future space-based detectors LISA and TianQin. A TeV-scale hidden sector with a phase transition described by the model could be observable at both detectors.
  • De Romeri, Valentina; Karamitros, Dimitrios; Lebedev, Oleg; Toma, Takashi (2020)
    Sterile neutrinos are one of the leading dark matter candidates. Their masses may originate from a vacuum expectation value of a scalar field. If the sterile neutrino couplings are very small and their direct coupling to the inflaton is forbidden by the lepton number symmetry, the leading dark matter production mechanism is the freeze-in scenario. We study this possibility in the neutrino mass range up to 1 GeV, taking into account relativistic production rates based on the Bose-Einstein statistics, thermal masses and phase transition effects. The specifics of the production mechanism and the dominant mode depend on the relation between the scalar and sterile neutrino masses as well as on whether or not the scalar is thermalized. We find that the observed dark matter abundance can be produced in all of the cases considered. We also revisit the freeze-in production of a Higgs portal scalar, pointing out the importance of a fusion mode, as well as the thermalization constraints.
  • Bigazzi, Francesco; Cotrone, Aldo L.; Järvinen, Matti; Kiritsis, Elias (2020)
    Among the possible CP-odd couplings of the axion to ordinary matter, the most relevant ones for phenomenology are the Yukawa couplings to nucleons. We analyze such non-derivative couplings within three different approaches: standard effective field theory, the Skyrme model and holographic QCD. In all the cases, the couplings can be related to the CP-odd non-derivative couplings to nucleons of the low-lying mesons and the eta '. Using the effective field theory approach we discuss how to derive the expressions for the CP-odd interaction terms as functions of the parameters of the effective Lagrangian at generic number of colors N-c and flavors N-f. Then, we compute the CP-odd couplings to nucleons of the axion, the eta ' and the pseudo-Goldstone mesons in both the Skyrme and the holographic QCD model with N-f = 2, 3. We present model-independent expressions for the coefficients of the non-derivative axion-nucleon couplings. This allows us to provide quantitative estimates of these couplings.
  • Alanne, Tommi; Benincasa, Nico; Heikinheimo, Matti; Kannike, Kristjan; Keus, Venus; Koivunen, Niko; Tuominen, Kimmo (2020)
    Pseudo-Goldstone dark matter is a thermal relic with momentum-suppressed direct-detection cross section. We study the most general model of pseudo-Goldstone dark matter arising from the complex-singlet extension of the Standard Model. The new U(1) symmetry of the model is explicitly broken down to a CP-like symmetry stabilising dark matter. We study the interplay of direct-detection constraints with the strength of cosmic phase transitions and possible gravitational-wave signals. While large U(1)-breaking interactions can generate a large direct-detection cross section, there are blind spots where the cross section is suppressed. We find that sizeable cubic couplings can give rise to a first-order phase transition in the early universe. We show that there exist regions of the parameter space where the resulting gravitational-wave signal can be detected in future by the proposed Big Bang Observer detector.
  • Arcadi, Giorgio; Lebedev, Oleg; Pokorski, Stefan; Toma, Takashi (2019)
    A stable real scalar provides one of the simplest possibilities to account for dark matter. We consider the regime where its coupling to the Standard Model fields is negligibly small. Due to self-coupling, the scalar field can reach thermal or at least kinetic equilibrium, in which case the system is characterized by its temperature and effective chemical potential. We perform a fully relativistic analysis of dark matter evolution, thermalization conditions and different freeze-out regimes, including the chemical potential effects. To this end, we derive a relativistic Bose-Einstein analog of the Gelmini-Gondolo formula for a thermal averaged cross section. Finally, we perform a comprehensive parameter space analysis to determine regions consistent with observational constraints. Dark matter can be both warm and cold in this model.
  • Croon, Djuna; Gould, Oliver; Schicho, Philipp; Tenkanen, Tuomas V.; White, Graham (2021)
    We critically examine the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions, using the Standard Model effective field theory as our guide. In the usual daisy-resummed approach, we find large uncertainties due to renormalisation scale dependence, which amount to two to three orders-of-magnitude uncertainty in the peak gravitational wave amplitude, relevant to experiments such as LISA. Alternatively, utilising dimensional reduction in a more sophisticated perturbative approach drastically reduces this scale dependence, pushing it to higher orders. Further, this approach resolves other thorny problems with daisy resummation: it is gauge invariant which is explicitly demonstrated for the Standard Model, and avoids an uncontrolled derivative expansion in the bubble nucleation rate.