Browsing by Subject "Cytokinin"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Mellor, Nathan; Vaughan-Hirsch, John; Kumpers, Britta M. C.; Help-Rinta-Rahko, Hanna; Miyashima, Shunsuke; Mahonen, Ari Pekka; Campilho, Ana; Kings, John R.; Bishopp, Anthony (2019)
    Pattern formation is typically controlled through the interaction between molecular signals within a given tissue. During early embryonic development, roots of the model plant Arabidopsis thatiana have a radially symmetric pattern, but a heterogeneous input of the hormone auxin from the two cotyledons forces the vascular cylinder to develop a diarch pattern with two xylem poles. Molecular analyses and mathematical approaches have uncovered the regulatory circuit that propagates this initial auxin signal into a stable cellular pattern. The diarch pattern seen in Arabidopsis is relatively uncommon among flowering plants, with most species having between three and eight xylem poles. Here, we have used multiscale mathematical modelling to demonstrate that this regulatory module does not require a heterogeneous auxin input to specify the vascular pattern. Instead, the pattern can emerge dynamically, with its final form dependent upon spatial constraints and growth. The predictions of our simulations compare to experimental observations of xylem pole number across a range of species, as well as in transgenic systems in Arabidopsis in which we manipulate the size of the vascular cylinder. By considering the spatial constraints, our model is able to explain much of the diversity seen in different flowering plant species.
  • Nuorti, Ninni (Helsingfors universitet, 2017)
    DRama Queen (DRQ) is an unknown conserved gene that might be involved with sensing cytokinin signalling in the roots of Arabidopsis thaliana. It was originally found in a mutant screen when a mutated version of it – mDRQ – was found to improve the cytokinin sensitivity of plants in a desensitized genetic background. This thesis was done to define the protoxylem phenotype of mDRQ single mutant in Columbia (Col-0) background and to test the functionality of the gene by analyzing the complementation lines. The protoxylem phenotypes were scored from fuchsin stained samples by DIC microscopy. Protoxylem differentiation in the root of A. thaliana is an outcome of a mutually inhibitory signalling mechanism of auxins and cytokinins. Analysis of protoxylem status is a good tool for studying the cytokinin signalling because the differentiation is affected both by increased and reduced signalling levels. High signalling causes loss of protoxylem phenotypes whereas whereas low cytokinin signalling leads to ectopic protoxylem formation. The data of this thesis was analysed by SPSS version 22 software using cumulative logit modelling for the analysis. It was considered to be the most suitable alternative for analysis since the protoxylem phenotype data is ordinal by its nature. A protoxylem phenotype distribution was defined for mDRQ line and it was statistically different from Col-0. Most of the complementation lines were functional at a statistically significant level though the phenotype distributions of the complementation lines were not identical with original background. The difference could possibly be explained by the fact that the mDRQ gene is partially functional and may influence the phenotype distributions.
  • Kareem, Abdul; Radhakrishnan, Dhanya; Wang, Xin; Bagavathiappan, Subhikshaa; Trivedi, Zankhana B.; Sugimoto, Kaoru; Xu, Jian; Mähonen, Ari Pekka; Prasad, Kalika (2016)
    Background: Plants have the remarkable property to elaborate entire body plan from any tissue part. The conversion of lateral root primordium (LRP) to shoot is an ideal method for plant propagation and for plant researchers to understand the mechanism underlying trans-differentiation. Until now, however, a robust method that allows the efficient conversion of LRP to shoot is lacking. This has limited our ability to study the dynamic phases of reprogramming at cellular and molecular levels. Results: Here we present an efficient protocol for the direct conversion of LRP to a complete fertile shoot system. This protocol can be readily applied to the various ecotypes of Arabidopsis. We show that, the conversion process is highly responsive to developmental stages of LRP and changes in external environmental stimuli such as temperature. The entire conversion process can be adequately analyzed by histological and imaging techniques. As a demonstration, using a battery of cell fate specific markers, we show that confocal time-lapse imaging can be employed to uncover the early molecular events, intermediate developmental phases and relative abundance of stem cell regulators during the conversion of LRP to shoot. Conclusion: Our method is highly efficient, independent of genotypes tested and suitable to study the reprogramming of LRP to shoot in intact plants as well as in excised roots.