Browsing by Subject "Cytotoxicity"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Helfenstein, Andreas; Vahermo, Mikko Martti Antero; Nawrot, Dorota Anna; Demirci, Fatih; İşcan, Gökalp; Krogerus, Sara; Yli-Kauhaluoma, Jari Tapani; Moreira, Vânia M.; Tammela, Päivi Sirpa Marjaana (2017)
    Abietic and dehydroabietic acid are interesting diterpenes with a highly diverse repertoire of associated bioactivities. They have, among others, shown antibacterial and antifungal activity, potentially valuable in the struggle against the increasing antimicrobial resistance and imminent antibiotic shortage. In this paper, we describe the synthesis of a set of 9 abietic and dehydroabietic acid derivatives containing amino acid side chains and their in vitro antimicrobial profiling against a panel of human pathogenic microbial strains. Furthermore, their in vitro cytotoxicity against mammalian cells was evaluated. The experimental results showed that the most promising compound was 10 [methyl N-(abiet-8,11, 13-trien-18-yl)-D-serinate], with an MIC90 of 60 mu g/mL against Staphylococcus aureus ATCC 25923, and 8 mu g/mL against methicillin-resistant S. aureus, Staphylococcus epidermidis and Streptococcus mitis. The IC50 value for compound 10 against Balb/c 3T3 cells was 45 mu g/mL. (C) 2016 Elsevier Ltd. All rights reserved.
  • Gautam, Prson; Karhinen, Leena; Szwajda, Agnieszka; Jha, Sawan Kumar; Yadav, Bhagwan; Aittokallio, Tero; Wennerberg, Krister (2016)
    Background: Triple negative breast cancer (TNBC) is a highly heterogeneous and aggressive type of cancer that lacks effective targeted therapy. Despite detailed molecular profiling, no targeted therapy has been established. Hence, with the aim of gaining deeper understanding of the functional differences of TNBC subtypes and how that may relate to potential novel therapeutic strategies, we studied comprehensive anticancer-agent responses among a panel of TNBC cell lines. Method: The responses of 301 approved and investigational oncology compounds were measured in 16 TNBC cell lines applying a functional profiling approach. To go beyond the standard drug viability effect profiling, which has been used in most chemosensitivity studies, we utilized a multiplexed readout for both cell viability and cytotoxicity, allowing us to differentiate between cytostatic and cytotoxic responses. Results: Our approach revealed that most single-agent anti-cancer compounds that showed activity for the viability readout had no or little cytotoxic effects. Major compound classes that exhibited this type of response included anti-mitotics, mTOR, CDK, and metabolic inhibitors, as well as many agents selectively inhibiting oncogene-activated pathways. However, within the broad viability-acting classes of compounds, there were often subsets of cell lines that responded by cell death, suggesting that these cells are particularly vulnerable to the tested substance. In those cases we could identify differential levels of protein markers associated with cytotoxic responses. For example, PAI-1, MAPK phosphatase and Notch-3 levels associated with cytotoxic responses to mitotic and proteasome inhibitors, suggesting that these might serve as markers of response also in clinical settings. Furthermore, the cytotoxicity readout highlighted selective synergistic and synthetic lethal drug combinations that were missed by the cell viability readouts. For instance, the MEK inhibitor trametinib synergized with PARP inhibitors. Similarly, combination of two non-cytotoxic compounds, the rapamycin analog everolimus and an ATP-competitive mTOR inhibitor dactolisib, showed synthetic lethality in several mTOR-addicted cell lines. Conclusions: Taken together, by studying the combination of cytotoxic and cytostatic drug responses, we identified a deeper spectrum of cellular responses both to single agents and combinations that may be highly relevant for identifying precision medicine approaches in TNBC as well as in other types of cancers.
  • Eränkö, Elina; Ilander, Mette; Tuomiranta, Mirja; Mäkitie, Antti; Lassila, Tea; Kreutzman, Anna; Klemetti, Paula; Mustjoki, Satu; Hannula-Jouppi, Katariina; Ranki, Annamari (2018)
    BackgroundNetherton syndrome (NS) is a rare life-threatening syndrome caused by SPINK5 mutations leading to a skin barrier defect and a severe atopic diathesis. NS patients are prone to bacterial infections, but the understanding of the underlying immune deficiency is incomplete.ResultsWe analyzed blood lymphocyte phenotypes and function in relation to clinical infections in 11 Finnish NS patients, aged 3 to 17years, and healthy age-matched controls. The proportion of B cells (CD19(+)) and naive B cells (CD27(-), IgD(+)) were high while memory B cells (CD27(+)) and switched memory B cells (CD27(+)IgM(-)IgD(-)), crucial for the secondary response to pathogens, was below or in the lowest quartile of the reference values in 8/11 (73%) and 9/11 (82%) patients, respectively. The proportion of activated non-differentiated B cells (CD21(low), CD38l(ow)) was below or in the lowest quartile of the reference values in 10/11 (91%) patients. Despite normal T cell counts, the proportion of naive CD4(+) T cells was reduced significantly and the proportion of CD8(+) T central memory significantly elevated. An increased proportion of CD57(+) CD8(+) T cells indicated increased differentiation potential of the T cells. The proportion of cytotoxic NK cells was elevated in NS patients in phenotypic analysis based on CD56DIM, CD16(+) and CD27(-) NK cells but in functional analysis, decreased expression of CD107a/b indicated impaired cytotoxicity.The T and NK cell phenotype seen in NS patients also significantly differed from that of age-matched atopic dermatitis (AD) patients, indicating a distinctive profile in NS. The frequency of skin infections correlated with the proportion of CD62L(+) T cells, naive CD4(+) and CD27(+) CD8(+) T cells and with activated B cells. Clinically beneficial intravenous immunoglobulin therapy (IVIG) increased naive T cells and terminal differentiated effector memory CD8(+) cells and decreased the proportion of activated B cells and plasmablasts in three patients studied.ConclusionsThis study shows novel quantitative and functional aberrations in several lymphocyte subpopulations, which correlate with the frequency of infections in patients with Netherton syndrome. IVIG therapy normalized some dysbalancies and was clinically beneficial.
  • Eränkö, Elina; Ilander, Mette; Tuomiranta, Mirja; Mäkitie, Antti; Lassila, Tea; Kreutzman, Anna; Klemetti, Paula; Mustjoki, Satu; Hannula-Jouppi, Katariina; Ranki, Annamari (BioMed Central, 2018)
    Abstract Background Netherton syndrome (NS) is a rare life-threatening syndrome caused by SPINK5 mutations leading to a skin barrier defect and a severe atopic diathesis. NS patients are prone to bacterial infections, but the understanding of the underlying immune deficiency is incomplete. Results We analyzed blood lymphocyte phenotypes and function in relation to clinical infections in 11 Finnish NS patients, aged 3 to 17 years, and healthy age-matched controls. The proportion of B cells (CD19+) and naïve B cells (CD27−, IgD+) were high while memory B cells (CD27+) and switched memory B cells (CD27+IgM−IgD−), crucial for the secondary response to pathogens, was below or in the lowest quartile of the reference values in 8/11 (73%) and 9/11 (82%) patients, respectively. The proportion of activated non-differentiated B cells (CD21low, CD38low) was below or in the lowest quartile of the reference values in 10/11 (91%) patients. Despite normal T cell counts, the proportion of naïve CD4+ T cells was reduced significantly and the proportion of CD8+ T central memory significantly elevated. An increased proportion of CD57+ CD8+ T cells indicated increased differentiation potential of the T cells. The proportion of cytotoxic NK cells was elevated in NS patients in phenotypic analysis based on CD56DIM, CD16+ and CD27− NK cells but in functional analysis, decreased expression of CD107a/b indicated impaired cytotoxicity. The T and NK cell phenotype seen in NS patients also significantly differed from that of age-matched atopic dermatitis (AD) patients, indicating a distinctive profile in NS. The frequency of skin infections correlated with the proportion of CD62L+ T cells, naïve CD4+ and CD27+ CD8+ T cells and with activated B cells. Clinically beneficial intravenous immunoglobulin therapy (IVIG) increased naïve T cells and terminal differentiated effector memory CD8+ cells and decreased the proportion of activated B cells and plasmablasts in three patients studied. Conclusions This study shows novel quantitative and functional aberrations in several lymphocyte subpopulations, which correlate with the frequency of infections in patients with Netherton syndrome. IVIG therapy normalized some dysbalancies and was clinically beneficial.
  • Nasri, Atefeh; Pohjanvirta, Raimo (2021)
    Phytoestrogens have been widely praised for their health-promoting effects, whereas synthetic environmental estrogens are considered a toxicological risk to human health. The aim of this study was therefore to compare in vitro the estrogenic, cytotoxic, and genotoxic profiles of three common estrogen-like endocrine-disrupting chemicals: the phytoestrogens 8-prenylnaringenine (8-PN) and genistein and the synthetic xenoestrogen tartrazine. As assessed by a yeast bioreporter assay and estrogen-dependent proliferative response in human mammary gland adenocarcinoma cell line (MCF-7), 8-PN showed the highest estrogen-like activity of the three compounds, followed by tartrazine and genistein. After 24-h incubation on MCF-7 cells, all three compounds exhibited low cytotoxicity in the lactate dehydrogenase assay and no genotoxicity in the micronucleus assay. These results demonstrate that 8-PN, genistein and tartrazine possess variable estrogenic activity but display little cellular toxicity in short-term tests in vitro. No difference between phytoestrogens and a synthetic xenoestrogen could be established.
  • Hiltunen, Anukka (Helsingfors universitet, 2010)
    The major problem in cancer treatment is toxic side effects of the chemotherapy. Typically less than 1 % of the administered free drug reaches target cells while the rest damages non-diseased cells. Toxic side effects often limit dose escalation of anticancer drugs which leads to incomplete tumor response, early disease relapse and possible the development of drug resistance. Liposomes can be targeted in cancer tissue with passive or active targeting. In passive targeting the liposomes accumulate in abnormally formed cancer tissue through the process of extravasation and enhance the concentration of liposomal drug in solid tumor. To further improve the anticancer efficiency of passive targeted liposomes is to couple a targeting ligand to the surface of the drug carrier (i.e. active targeting). The ligand specifically binds to a surface epitope on the target cell leading to the accumulation of the liposomal drug inside the tumor cells. The aim of this study was to investigate the cytotoxicity of targeted immunoliposomes. In experimental part the liposomes were constructed using cetuximab (C225, Erbitux®) antibody and evaluated for specific cellular uptake and cytotoxicity in vitro. Cetuximab antibody is specific and selective inhibitor of HER-1 -protein (ErbB-1, EGFR, epidermal growth factor receptor). HER1 -protein is frequently expressed in high levels in human carcinomas (for example in lung and colorectal cancers, head, neck and breast cancers and in pancreatic, ovarian, prostate and bladder carcinomas). Specific immunoliposome uptake and cytotoxicity were studied in SKOV-3cells (ovarian adenocarsinoma cell line) which overexpress the EGF -receptor. Monkey kidney epithelial cells (CV-1) were used as a control cell line which represents non-diseased cells. Active targeting and cellular uptake of liposomes were investigated in cell uptake studies. Non-targeted pegylated liposomes were used as control liposomes. Specific binding of the cetuximab antibody to EGF -receptor was noticed in competition studies. The in vitro cytotoxicity of doxorubicin containing immunoliposomes was studied with Alamar Blue® cell viability assay. Liposome size was determined at intervals of about two weeks during the experimental part. In conclusions, antibody targeted immunoliposomes showed greater cellular uptake and cytotoxicity in EGFRoverexpressing target cells (SKOV-3) than the corresponding non-targeted liposomal drug. Immunoliposomes showed greater cytotoxicity after five days incubation, which can be a consequence of liposome formulation and slow rate of release of doxorubicin. In contrast, antibody targeted liposomes did not show specific cellular uptake or cytotoxicity in CV-1 control cell line. In clinical cancer therapy actively targeted liposomes could improve the therapeutic effectiveness of the liposomal preparations. Many studies have shown that ligand-bearing liposomes will selectively bind to target cells in vitro, but only few studies have shown the possibility in vivo.
  • Wysok, Beata; Wojtacka, Joanna; Kivistö, Rauni (2020)
    The aim of this study was to determine the pathogenic markers associated with Campylobacter infection in humans. A total of 104 Campylobacter isolates obtained from poultry and humans were examined for the presence of nine virulence genes and their ability to adhere to, invade and produce cytotoxin were defined using HeLa cells. The diversity of the Campylobacter spp. isolates was studied based on sequencing of the SVR-region of flaA gene. Altogether 45 flaA-SVR alleles were identified among 104 Campylobacter isolates of poultry and human origin. All Campylobacter isolates possessed flaA, cadF and racR genes involved in adherence. Accordingly, all poultry and human isolates exhibited adherence towards HeLa cells at mean levels of 0.95% and 0.82% of starting viable inoculum, respectively. The genes involved in invasion (iam and pldA) and cytotoxin production (cdtA, cdtB and cdtC) were also widely distributed among the human and poultry Campylobacter isolates. Significantly higher invasiveness was observed for poultry isolates (mean level of 0.002% of starting bacterial inoculum) compared to human isolates (0.0005%). Interestingly the iam gene, associated with invasion, was more common in human (100%) than poultry (84%) isolates, and the poultry isolates lacking the iam gene showed a marked reduction in their ability to invade HeLa cells. Moreover, virB11 was present in 22% of the poultry and 70.4% of the human isolates. Strains lacking virB11 showed a slight reduction in invasion, however in the absence of iam even the poultry isolates containing virB11 were unable to invade HeLa cells. The mean cytotoxicity of Campylobacter isolates from poultry and human was 26.7% and 38.7%, respectively. Strains missing both the cdtB and cdtC genes were non-cytotoxic compared to strains containing all three cdtABC genes, which were the most cytotoxic among the C. jejuni and C. coli isolates from both sources. No cytotoxic effect was observed in only 4% of poultry and 5.6% of human isolates.
  • Aly, Ashraf A.; El-Sheref, Essmat M.; Bakheet, Momtaz E. M.; Mourad, Mai A. E.; Brown, Alan B.; Bräse, Stefan; Nieger, Martin; Ibrahim, Mahmoud A. A. (2018)
    Two novel series of N-2,3-bis(6-substituted-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)naphthalene-1,4-diones 3a-d and substituted N-(methyl/ethyl)bisquinolinone triethyl-ammonium salts 4e,f were successfully synthesized. The synthesized compounds were targeted as new candidates to extracellular signal-regulated kinases 1/2 (ERK1/2) with considerable antineoplastic activity. The synthesis involved the reactions of 2 equivalents of 4-hydroxy-2(1H)-quinolinones la-f and one equivalent of 1,4-naphthoquinone (2) in a mixture of ethanol/dimethylformamide (1:1) as a solvent and 0.5 mL Et3N. In the reaction of 6-methyl-4-hydroxyquinolone 1b with 2, a side product 4b of the second series was obtained. In general, the presence of free NH-quinolone gave a single compound of the first series, whereas reaction of N-methyl/ethyl-quinolones 1e, f with 2 enhanced the formation of compounds of the second series. The structures of the new compounds were proved by different spectroscopic techniques such as IR, NMR (2D-NMR) and mass spectra, elemental analysis, and X-ray crystallography. To further elucidate the mechanism of action of these newly synthesized compounds, compounds 3a, 3b, 4e and 4f were selected to investigate for their MAP Kinases pathway inhibition together with molecular docking using ATP-binding site of ERK2. The results revealed that compounds 3a, 3b and 4f inhibited ETS-1 phosphorylation by ERK2 in a dose dependent manner. Also, compound 4f showed highest potency for ERK2 inhibition with ATPcompetitive inhibition mechanism which was confirmed by the formation of three hydrogen bond in the molecular docking studies. The synthesized compounds were then tested for their in vitro anticancer activity against the NCI-60 panel of tumor cell lines. Interestingly, the selected compounds displayed from modest to strong cytotoxic activities. Compound 3b demonstrated broad spectrum anti-tumor activity against the nine tumor subpanels tested, while compound 3d proved to be lethal to most of the cancer cell lines as shown by their promising GI(50) and TGI values in NCI in vitro five dose testing. These results revealed that the synthesized compounds can potentially serve as leads for the development of novel chemotherapeutic agents and structure improvement will be necessary for some derivatives for enhancing their cellular activities and pharmacokinetic profile.
  • Figueiredo, Joana; Serrano, João L.; Cavalheiro, Eunice; Keurulainen, Leena; Yli-Kauhaluoma, Jari Tapani; Moreira, Vânia M.; Ferreira, Susana; Domingues, Fernanda C.; Silvestre, Samuel; Almeida, Paulo (2018)
    Barbituric and thiobarbituric acid derivatives have become progressively attractive to medicinal chemists due to their wide range of biological activities. Herein, different series of 1,3,5-trisubstituted barbiturates and thiobarbiturates were prepared in moderate to excellent yields and their activity as xanthine oxidase inhibitors, antioxidants, antibacterial agents and as anti-proliferative compounds was evaluated in vitro. Interesting bioactive barbiturates were found namely, 1,3-dimethyl-5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6c) and 1,3-dimethyl-5-[1-[2-(4-nitrophenyl)hydrazinyl]ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6e), which showed concomitant xanthine oxidase inhibitory effect (IC50 values of 24.3 and 27.9 mu M, respectively), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity (IC50 values of 18.8 and 23.8 mu M, respectively). In addition, 5-[1-(2-phenylhydrazinyl)ethylidene]pyrimidine-2,4,6(1H,3H,5H)-trione (6d) also revealed DPPH radical scavenger effect, with an IC50 value of 20.4 mu M. Moreover, relevant cytotoxicity against MCF-7 cells (IC50 = 13.3 mu M) was observed with 5-[[(2-chloro-4-nitrophenyl)amino]methylene]-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (7d). Finally, different 5-hydrazinylethylidenepyrimidines revealed antibacterial activity against Acinetobacter baumannii (MIC values between 12.5 and 25.0 mu M) which paves the way for developing new treatments for infections caused by this Gram-negative coccobacillus bacterium, known to be an opportunistic pathogen in humans with high relevance in multidrug-resistant nosocomial infections. The most promising bioactive barbiturates were studied in silico with emphasis on compliance with the Lipinski's rule of five as well as several pharmacokinetics and toxicity parameters. (C) 2017 Elsevier Masson SAS. All rights reserved.