Browsing by Subject "D-RECEPTOR"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Lou, Yan-Ru; Toh, Tai Chong; Tee, Yee Han; Yu, Hanry (2017)
    25-Hydroxyvitamin D-3 [25(OH)D-3] has recently been found to be an active hormone. Its biological actions are demonstrated in various cell types. 25(OH)D-3 deficiency results in failure in bone formation and skeletal deformation. Here, we investigated the effect of 25(OH)D-3 on osteogenic differentiation of human mesenchymal stem cells (hMSCs). We also studied the effect of 1 alpha, 25-dihydroxyvitamin D-3[1 alpha,25-(OH)(2)D-3], a metabolite of 25(OH)D-3. One of the vitamin D responsive genes, 25(OH)D-3-24-hydroxylase (cytochrome P450 family 24 subfamily A member 1) mRNA expression is up-regulated by 25(OH)D-3 at 250-500 nM and by 1 alpha, 25-(OH)(2)D-3 at 1-10 nM. 25(OH)D-3 and 1 alpha, 25-(OH)(2)D-3 at a time-dependent manner alter cell morphology towards osteoblast-associated characteristics. The osteogenic markers, alkaline phosphatase, secreted phosphoprotein 1 (osteopontin), and bone gamma-carboxyglutamate protein (osteocalcin) are increased by 25(OH)D-3 and 1 alpha,25-(OH)(2)D-3 in a dose-dependent manner. Finally, mineralisation is significantly increased by 25(OH)D-3 but not by 1 alpha, 25-(OH)(2)D-3. Moreover, we found that hMSCs express very low level of 25(OH)D-3-1 alpha-hydroxylase (cytochrome P450 family 27 subfamily B member 1), and there is no detectable 1 alpha, 25-(OH)(2)D-3 product. Taken together, our findings provide evidence that 25(OH)D-3 at 250-500 nM can induce osteogenic differentiation and that 25(OH)D-3 has great potential for cell-based bone tissue engineering.
  • Einarsdottir, Elisabet; Pekkinen, Minna; Krjutskov, Kaarel; Katayama, Shintaro; Kere, Juha; Mäkitie, Outi; Viljakainen, Heli (2019)
    Objective: The effect of vitamin D at the transcriptome level is poorly understood, and furthermore, it is unclear if it differs between obese and normal-weight subjects. The objective of the study was to explore the transcriptome effects of vitamin D supplementation. Design and methods: We analysed peripheral blood gene expression using GlobinLock oligonucleotides followed by RNA sequencing in individuals participating in a 12-week randomised double-blinded placebo-controlled vitamin D intervention study. The study involved 18 obese and 18 normal-weight subjects (of which 20 males) with mean (+/- s.D.) age 20.4 (+/- 2.5) years and BMIs 36 (+/- 10) and 23 (+/- 4) kg/m(2), respectively. The supplemental daily vitamin D dose was 50 mu g (2000 IU). Data were available at baseline, 6- and 12-week time points and comparisons were performed between the vitamin D and placebo groups separately in obese and normal-weight subjects. Results: Significant transcriptomic changes were observed at 6 weeks, and only in the obese subjects: 1724 genes were significantly upregulated and 186 genes were downregulated in the vitamin D group compared with placebo. Further analyses showed several enriched gene categories connected to mitochondrial function and metabolism, and the most significantly enriched pathway was related to oxidative phosphorylation (adjusted P value 3.08 x 10(-14)). Taken together, our data suggest an effect of vitamin D supplementation on mitochondrial function in obese subjects. Conclusions: Vitamin D supplementation affects gene expression in obese, but not in normal-weight subjects. The altered genes are enriched in pathways related to mitochondrial function. The present study increases the understanding of the effects of vitamin D at the transcriptome level.
  • Tuohimaa, Pentti; Wang, Jing-Huan; Khan, Sofia; Kuuslahti, Marianne; Qian, Kui; Manninen, Tommi; Auvinen, Petri; Vihinen, Mauno; Lou, Yan-Ru (2013)
    1α,25-Dihydroxyvitamin D3 (1α,25(OH)2D3) had earlier been regarded as the only active hormone. The newly identified actions of 25-hydroxyvitamin D3 (25(OH)D3) and 24R,25-dihydroxyvitamin D3 (24R,25(OH)2D3) broadened the vitamin D3 endocrine system, however, the current data are fragmented and a systematic understanding is lacking. Here we performed the first systematic study of global gene expression to clarify their similarities and differences. Three metabolites at physiologically comparable levels were utilized to treat human and mouse fibroblasts prior to DNA microarray analyses. Human primary prostate stromal P29SN cells (hP29SN), which convert 25(OH)D3 into 1α,25(OH)2D3 by 1α-hydroxylase (encoded by the gene CYP27B1), displayed regulation of 164, 171, and 175 genes by treatment with 1α,25(OH)2D3, 25(OH)D3, and 24R,25(OH)2D3, respectively. Mouse primary Cyp27b1 knockout fibroblasts (mCyp27b1−/−), which lack 1α-hydroxylation, displayed regulation of 619, 469, and 66 genes using the same respective treatments. The number of shared genes regulated by two metabolites is much lower in hP29SN than in mCyp27b1−/−. By using DAVID Functional Annotation Bioinformatics Microarray Analysis tools and Ingenuity Pathways Analysis, we identified the agonistic regulation of calcium homeostasis and bone remodeling between 1α,25(OH)2D3 and 25(OH)D3 and unique non-classical actions of each metabolite in physiological and pathological processes, including cell cycle, keratinocyte differentiation, amyotrophic lateral sclerosis signaling, gene transcription, immunomodulation, epigenetics, cell differentiation, and membrane protein expression. In conclusion, there are three distinct vitamin D3 hormones with clearly different biological activities. This study presents a new conceptual insight into the vitamin D3 endocrine system, which may guide the strategic use of vitamin D3 in disease prevention and treatment.
  • Helve, Otto; Viljakainen, Heli; Holmlund-Suila, Elisa; Rosendahl, Jenni; Hauta-alus, Helena; Enlund-Cerullo, Maria; Valkama, Saara; Heinonen, Kati; Räikkönen, Katri; Hytinantti, Timo; Mäkitie, Outi; Andersson, Sture (2017)
    Background: Vitamin D is important for bone mass accrual during growth. Additionally, it is considered a requirement for a multitude of processes associated with, for example, the development of immunity. Many countries apply vitamin D supplementation strategies in infants, but the guidelines are not based on scientific evidence and aim at prevention of rickets. It remains unclear whether the recommended doses are sufficient for the wide array of other effects of vitamin D. The VIDI trial performed in Finland is the first large randomised controlled study for evaluation of the effects of different vitamin D supplemental doses in infancy on: 1. bone strength 2. infections and immunity 3. allergy, atopy and asthma 4. cognitive development 5. genetic regulation of mineral homeostasis Methods/Design: VIDI, a randomised controlled double-blinded single-centre intervention study is conducted in infants from the age of 2 weeks to 24 months. Participants, recruited at Helsinki Maternity Hospital, are randomised to receive daily either 10 mu g (400 IU) or 30 mu g (1 200 IU) of vitamin D3 supplementation. Both groups are assessed at 6 months of age for calcium homeostasis, and at 12 and 24 months of age for parameters associated with bone strength, growth, developmental milestones, infections, immunity, atopy-related diseases, and genetic factors involved in these functions. Discussion: The study enables evaluation of short and long term effects of supplemental vitamin D on growth, immune functions and skeletal and developmental parameters in infants, and the effects of genetic factors therein. The results enable institution of evidence-based guidelines for vitamin D supplementation in infancy.
  • Mäkitie, Antti; Tuokkola, Iida; Laurell, Göran; Mäkitie, Outi; Olsen, Kerry; Takes, Robert P.; Florek, Ewa; Szyfter, Krzysztof; Sier, Cornelis F. M.; Ferlito, Alfio (2021)
    Purpose of review Observational studies have shown that serum 25-OH vitamin D [25(OH)D] is inversely associated with overall cancer risk in many malignancies. We performed a systematic literature review to determine whether vitamin D deficiency is related to head and neck cancer (HNC) etiology and outcome. Recent findings The search yielded five prospective studies reporting 25(OH)D levels prior to cancer diagnosis and their effect on the risk of HNC. Eight studies were cross-sectional or case-control studies, in which 25(OH)D levels were only measured after cancer diagnosis. Two studies found an inverse association between 25(OH)D level and HNC risk, while two other prospective cohort studies demonstrated no connection between 25(OH)D and HNC risk. Several studies reported cancer patients to have significantly lower 25(OH)D levels than controls. Associations between 25(OH)D and prognosis and mortality were variable. The link between vitamin D and HNC has so far only been investigated in a few observational, prospective, and case-control studies. Vitamin D deficiency may be more common in HNC patients than in the healthy population. There is no evidence for a causal relationship. Further studies are needed to evaluate whether low 25(OH)D concentrations play a role in the development or outcome of HNCs.
  • Savonius, Okko; Pelkonen, Tuula; Roine, Irmeli; Viljakainen, Heli; Andersson, Sture; Fernandez, Josefina; Peltola, Heikki; Helve, Otto (2018)
    Aim Vitamin D deficiency impairs the immunological system and has been associated with worse outcomes of infectious diseases, but its role in bacterial meningitis remains unknown. We investigated whether serum 25-hydroxyvitamin D concentrations related to disease outcomes and to cerebrospinal fluid (CSF) cathelicidin concentrations in childhood bacterial meningitis. Methods Results All consecutively enrolled patients in a clinical trial on childhood bacterial meningitis in Latin America in 1996-2003 were considered, and 142 children, with a median age of seven months who had a confirmed bacterial aetiology and frozen serum available for further analyses, were included in this study. Serum 25-hydroxyvitamin D concentrations were determined with a chemiluminescence immunoassay analyser, while CSF cathelicidin was measured by enzyme-linked immunosorbent assay. The median serum 25-hydroxyvitamin D concentration was 96 (range 19-251) nmol/L. No relationship was found with patient survival, but children with any neurological sequelae had lower serum 25-hydroxyvitamin D levels than children without sequelae. Serum 25-hydroxyvitamin D was unrelated to cathelicidin concentrations in CSF. Conclusion Although serum 25-hydroxyvitamin D in children with bacterial meningitis was not associated with survival or CSF cathelicidin concentrations, its relationship with more detailed disease outcomes warrants further study.