Browsing by Subject "DEAD WOOD"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Heinaro, Einari; Tanhuanpaa, Topi; Yrttimaa, Tuomas; Holopainen, Markus; Vastaranta, Mikko (2021)
    Fallen trees decompose on the forest floor and create habitats for many species. Thus, mapping fallen trees allows identifying the most valuable areas regarding biodiversity, especially in boreal forests, enabling well-focused conservation and restoration actions. Airborne laser scanning (ALS) is capable of characterizing forests and the underlying topography. However, its potential for detecting and characterizing fallen trees under varying boreal forest conditions is not yet well understood. ALS-based fallen tree detection methods could improve our understanding regarding the spatiotemporal characteristics of dead wood over large landscapes. We developed and tested an automatic method for mapping individual fallen trees from an ALS point cloud with a point density of 15 points/m2. The presented method detects fallen trees using iterative Hough line detection and delineates the trees around the detected lines using region growing. Furthermore, we conducted a detailed evaluation of how the performance of ALS-based fallen tree detection is impacted by characteristics of fallen trees and the structure of vegetation around them. The results of this study showed that large fallen trees can be detected with a high accuracy in old-growth forests. In contrast, the detection of fallen trees in young managed stands proved challenging. The presented method was able to detect 78% of the largest fallen trees (diameter at breast height, DBH > 300 mm), whereas 30% of all trees with a DBH over 100 mm were detected. The performance of the detection method was positively correlated with both the size of fallen trees and the size of living trees surrounding them. In contrast, the performance was negatively correlated with the amount of undergrowth, ground vegetation, and the state of decay of fallen trees. Especially undergrowth and ground vegetation impacted the performance negatively, as they covered some of the fallen trees and lead to false fallen tree detections. Based on the results of this study, ALS-based collection of fallen tree information should be focused on old-growth forests and mature managed forests, at least with the current operative point densities.
  • Abrego, Nerea; Garcia-Baquero, Gonzalo; Halme, Panu; Ovaskainen, Otso; Salcedo, Isabel (2014)
  • Peuhu, Elina; Thomssen, Pia-Maria; Siitonen, Juha (2019)
    Hollow trees are an important habitat for a large number of saproxylic invertebrates, many of which are rare or threatened. Large old trees occur frequently in cities, but the saproxylic fauna inhabiting these trees has been poorly studied. Sampling in urban areas includes the risk of trap failure due to human interference, which needs to be considered when designing sampling. The aim of our study was to find an efficient trap type for sampling saproxylic beetles in hollow urban trees. We compared the species richness and species composition of saproxylic beetle assemblages between trunk window, aluminium foil tray and pitfall traps placed inside hollow trees in the Helsinki metropolitan area, Finland. A total of 30 traps of each trap type were set in 15 trees. The traps caught a total of 4004 saproxylic beetle individuals belonging to 131 species. Trunk window and aluminium foil traps had similar assemblage and trapping efficiency, and were significantly more efficient than pitfall traps. However, pitfall traps caught certain species more efficiently than the other two trap types. Time spent separating insects from samples was the most laborious work stage. The time increased with increasing sample weight, i.e. the amount of wood mould in the trap. Trunk windows were the most efficient trap type also in terms of saproxylic species and individuals per handling time. We conclude that saproxylic beetle fauna living in hollow urban trees can be efficiently sampled with small trunk window traps or containers placed on the inner walls of hollows.
  • Hagge, Jonas; Abrego, Nerea; Baessler, Claus; Bouget, Christophe; Brin, Antoine; Brustel, Herve; Christensen, Morten; Gossner, Martin M.; Heilmann-Clausen, Jacob; Horak, Akub; Gruppe, Axel; Isacsson, Gunnar; Koehler, Frank; Lachat, Thibault; Larrieu, Laurent; Schlaghamersky, Jiri; Thorn, Simon; Zapponi, Livia; Mueller, Joerg (2019)
    Aim: Beech forests comprise a globally unique temperate forest type in Europe. The dominance of beech in these forests developed during the ongoing post-glacial northward re-colonization, concurrently with intensified forest use by humans. We investigated how these two processes together with climate shaped the patterns of functional diversity of two major species groups involved in wood decomposition and whether functional diversity is determined on the local or regional species pool level. Location: European beech forest distribution range. Taxon: Saproxylic beetles and fungi. Methods: We analysed records of 532,496 saproxylic beetles of 788 species and 8,630 records of 234 saproxylic fungal species based on sets of traits similar to both groups. We tested how space, climate and landscape composition affect trait-based functional diversity on local and regional scales. Using structural equation modelling, we tested whether functional diversity is shaped on the local or regional scale. Results: The response of local functional diversity of both saproxylic beetles and fungi followed a highly congruent pattern of decreasing functional diversity towards the north, with higher elevation and accounted for overall geographical gradients with higher temperature, while increasing with higher precipitation. Structural equation modelling revealed that local functional diversity is determined by community changes operating on the level of the regional species pool. Main conclusions: Our findings suggest that the functional diversity patterns of saproxylic organisms in European beech forests are mainly determined on the regional scale and driven by anthropogenic and biogeographical processes. To conserve the variation and hotspots of functional diversity in beech forests, activities have to focus on a broad spatial and climatic range of sites throughout Europe, including the primeval forests in the east, as started by the UNESCO World Heritage selection of "Ancient and Primeval Beech Forests of the Carpathians and Other Regions of Europe".
  • Versluijs, Martijn; Mikusinski, Grzegorz; Roberge, Jean-Michel (2022)
    In the boreal biome, forest fires are the most important natural disturbance influencing tree substrate availability and quality for a range of specialized species. This includes the Eurasian Three-toed Woodpecker Picoides tridactylus, which is known to promptly utilize burned forest habitats. However, there are no studies addressing the foraging behaviour of this woodpecker in forests affected by wildfire. Such knowledge could assist the development of efficient post-fire management strategies which are in line with biodiversity conservation objectives. This study describes the foraging behaviour of the Eurasian Three-toed Woodpecker during the breeding season in a forest area of 13,100 ha in southcentral Sweden affected by a major wildfire in 2014. During the second breeding season after fire, we used instantaneous sampling where we observed the foraging behaviour of 28 individuals during a total of 1681 observation minutes. Our results suggest that Norway Spruce Picea abies and larger diameter trees (DBH > 25 cm) are important foraging substrates. However, data on time spent foraging on the different substrates suggest that Scots Pines Pinus sylvestris also are important. In particular, we identified the importance of the root collars, where excavation into sapwood was the main foraging method. Our study was performed during a clearly visible peak of Eurasian Three-toed Woodpecker abundance and this may suggest that the level of food resources available was very high which led to observed foraging patterns not necessarily observed in other types of habitats.
  • Purhonen, Jenna; Ovaskainen, Otso; Halme, Panu; Komonen, Atte; Huhtinen, Seppo; Kotiranta, Heikki; Laessoe, Thomas; Abrego, Nerea (2020)
    Tree species is one of the most important determinants of wood-inhabiting fungal community composition, yet its relationship with fungal reproductive and dispersal traits remains poorly understood. We studied fungal communities (total of 657 species) inhabiting broadleaved and coniferous dead wood (total of 192 logs) in 12 semi-natural boreal forests. We utilized a trait-based hierarchical joint species distribution model to examine how the relationship between dead wood quality and species occurrence correlates with reproductive and dispersal morphological traits. Broadleaved trees had higher species richness than conifers, due to discomycetoids and pyrenomycetoids specializing in them. Resupinate and pileate species were generally specialized in coniferous dead wood. Fungi inhabiting broadleaved trees had larger and more elongated spores than fungi in conifers. Spore size was larger and spore shape more spherical in species occupying large dead wood units. These results indicate the selective effect of dead wood quality, visible not only in species diversity, but also in reproductive and dispersal traits. (C) 2019 Elsevier Ltd and British Mycological Society. All rights reserved.
  • Kangas, Johanna; Kullberg, Peter; Pekkonen, Minna; Kotiaho, Janne S; Ollikainen, Markku (2021)
    The rates of ecosystem degradation and biodiversity loss are alarming and current conservation efforts are not sufficient to stop them. The need for new tools is urgent. One approach is biodiversity offsetting: a developer causing habitat degradation provides an improvement in biodiversity so that the lost ecological value is compensated for. Accurate and ecologically meaningful measurement of losses and estimation of gains are essential in reaching the no net loss goal or any other desired outcome of biodiversity offsetting. The chosen calculation method strongly influences biodiversity outcomes. We compare a multiplicative method, which is based on a habitat condition index developed for measuring the state of ecosystems in Finland to two alternative approaches for building a calculation method: an additive function and a simpler matrix tool. We examine the different logic of each method by comparing the resulting trade ratios and examine the costs of offsetting for developers, which allows us to compare the cost-effectiveness of different types of offsets. The results show that the outcomes of the calculation methods differ in many aspects. The matrix approach is not able to consider small changes in the ecological state. The additive method gives always higher biodiversity values compared to the multiplicative method. The multiplicative method tends to require larger trade ratios than the additive method when trade ratios are larger than one. Using scoring intervals instead of using continuous components may increase the difference between the methods. In addition, the calculation methods have differences in dealing with the issue of substitutability.
  • Kosunen, Maiju; Peltoniemi, Krista; Pennanen, Taina; Lyytikäinen-Saarenmaa, Päivi; Adamczyk, Bartosz; Fritze, Hannu; Zhou, Xuan; Starr, Mike (2020)
    Tree-killing forest disturbances such as storms and bark beetle outbreaks can lead to notable changes in the carbon (C) balance and functioning of forest ecosystems. In this study, the effects of a storm in 2010 followed by an outbreak of European spruce bark beetle (Ips typographus L.) on tree, litter and soil C stocks as well as humus layer C fractions and microbial community composition were examined in boreal Norway spruce (Picea abies L.) stands. Tree (aboveground), litter detritus (distinguishable twig, bark and cones) and soil (humus layer and 0-6 cm mineral soil) C stocks were quantified for undisturbed (living trees), storm disturbed (in 2010) and I. typographus disturbed (tree mortality in circa 2013-2014) plots in 2015-2016. Additional humus layer samples were collected in 2017 for determination of total microbial biomass C, ergosterol (fungal biomass indicator) and K2SO4 extractable (labile) C concentrations, as well as fungal and bacterial community composition (DNA sequencing). Ectomycorrhizal (ECM) fungal mycelial growth in topsoil was also quantified. In spite of the differing initial development and intensity of the two disturbance types, there was little difference in humus layer C and microbiology between the storm and bark beetle disturbed plot types at the time of the study. This may be due to the longer time since the disturbance at the storm disturbed plots. The shift from tree biomass to necromass C stocks was not reflected in differences in SOC stocks or humus layer extractable C concentrations between undisturbed and disturbed plot types, but the amount of litter detritus on forest floor was similar (storm) or higher (beetle) in disturbed plots in comparison to undisturbed ones. Humus layer microbial biomass C and ergosterol concentrations and ECM fungal abundance were lower on disturbed plots in comparison to undisturbed plots. The disturbed plots were also indicated to have a slightly higher abundance of some saprotrophic fungi. Differences in the effects of the two disturbance types may occur when studied at differing spatial scales and at different times after disturbance. To understand the full impact of such disturbances on forest functioning and C balance, long-term monitoring studies will be required.
  • Abrego, Nerea; Bässler, Claus; Christensen, Morten; Heilmann-Clausen, Jacob (2022)
    Identifying the spatial scales at which community assembly processes operate is fundamental for gaining a mechanistic understanding of the drivers shaping ecological communities. In this study, we examined whether and how traits and phylogenetic relationships structure fungal community assembly across spatial scales. We applied joint species distribution modelling to a European-scale dataset on 215 wood-inhabiting fungal species, which includes data on traits, phylogeny and environmental variables measured at the local (log-level) and regional (site-level) scales. At the local scale, wood-inhabiting fungal communities were mostly structured by deadwood decay stage, and the trait and phylogenetic patterns along this environmental gradient suggested the lack of diversifying selection. At regional scales, fungal communities and their trait distributions were influenced by climatic and connectivity-related variables. The fungal climatic niches were not phylogenetically structured, suggesting that diversifying selection or stabilizing selection for climatic niches has played a strong role in wood-inhabiting communities. In contrast, we found a strong phylogenetic signal in the responses to connectivity-related variables, revealing phylogenetic homogenization in small and isolated forests. Synthesis. Altogether, our results show that species-level traits and phylogenies modulate the responses of wood-inhabiting fungi to environmental processes acting at different scales. This result suggests that the evolutionary histories of fungal traits diverge along different environmental axes.
  • Jenna, Purhonen; Nerea, Abrego; Atte, Komonen; Seppo, Huhtinen; Heikki, Kotiranta; Thomas, Laessoe; Panu, Halme (2021)
    The general negative impact of forestry on wood-inhabiting fungal diversity is well recognized, yet the effect of forest naturalness is poorly disentangled among different fungal groups inhabiting dead wood of different tree species. We studied the relationship between forest naturalness, log characteristics and diversity of different fungal morpho-groups inhabiting large decaying logs of similar quality in spruce dominated boreal forests. We sampled all non-lichenized fruitbodies from birch, spruce, pine and aspen in 12 semi-natural forest sites of varying level of naturalness. The overall fungal community composition was mostly determined by host tree species. However, when assessing the relevance of the environmental variables separately for each tree species, the most important variable varied, naturalness being the most important explanatory variable for fungi inhabiting pine and aspen. More strikingly, the overall species richness increased as the forest naturalness increased, both at the site and log levels. At the site scale, the pattern was mostly driven by the discoid and pyrenoid morpho-groups inhabiting pine, whereas at the log scale, it was driven by pileate and resupinate morpho-groups inhabiting spruce. Although our study demonstrates that formerly managed protected forests serve as effective conservation areas for most wood-inhabiting fungal groups, it also shows that conservation planning and management should account for group- or host tree -specific responses.