Browsing by Subject "DECLINES"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Craig, Christie; Thomson, Robert; Santangeli, Andrea (2018)
    Ecosystem services are cited as one of the many reasons for conserving declining vulture populations in Africa. We aimed to explore how communal farmers in Namibia perceive vultures and the ecosystem services they provide, with special focus on cultural and regulating ecosystem services. We surveyed 361 households across Namibia’s communal farmlands and found that over two-thirds of households liked vultures and found them useful, stating that they were harmless and useful for locating dead livestock. The minority of households who disliked vultures believed that they were killing their livestock. Poisoning was the main cause of vulture mortalities reported by farmers. While poisoning appears to be a concern for vultures in the communal farmlands, it appears that cultural use of vulture body parts is a minimal threat. We found that few farmers knew of cultural beliefs about vultures or uses for body parts; most farmers believed these beliefs and practices to be outdated. It is further promising that communal farmers have an overall positive perception of vultures. This highlights the potential for communal conservancies to bring attention to vulture conservation in their constituencies.
  • Antao, Laura H.; Pöyry, Juha; Leinonen, Reima; Roslin, Tomas (2020)
    Aim Biodiversity is currently undergoing rapid restructuring across the globe. However, the nature of biodiversity change is not well understood, as community-level changes may hide differential responses in individual population trajectories. Here, we quantify spatio-temporal community and stability dynamics using a long-term high-quality moth monitoring dataset. Location Finland, Northern Europe. Time period 1993-2012. Major taxa studied Nocturnal moths (Lepidoptera). Methods We quantified patterns of change in species richness, total abundance, dominance and temporal variability at different organizational levels over a 20 year period and along a latitudinal gradient of 1,100 km. We used mixed-effects and linear models to quantify temporal trends for the different community and stability metrics and to test for latitudinal (or longitudinal) effects. Results We found contrasting patterns for different community metrics, and strong latitudinal patterns. While total moth abundance has declined, species richness has simultaneously increased over the study period, but with rates accelerating with latitude. In addition, we revealed a latitudinal pattern in temporal variability-the northernmost locations exhibited higher variability over time, as quantified by both metrics of richness and aggregated species population trends. Main conclusions When combined, our findings likely reflect an influx of species expanding their ranges poleward in response to warming. The overall decline in abundance and the latitudinal effect on temporal variability highlight potentially severe consequences of global change for community structure and integrity across high-latitude regions. Importantly, our results underscore that increases in species richness may be paralleled by a loss of individuals, which in turn might affect higher trophic levels. Our findings suggest that the ongoing global species redistribution is affecting both community structure and stability over time, leading to compounded and partly opposing effects of global change depending on which biodiversity dimension we focus on.
  • Byholm, Patrik; Mäkeläinen, Sanna; Santangeli, Andrea; Goulson, Dave (2018)
    The evidence of negative impacts of agricultural pesticides on non-target organisms is constantly growing. One of the most widely used group of pesticides are neonicotinoids, used in treatments of various plants, e.g. oilseed crops, corn and apples, to prevent crop damage by agricultural insect pests. Treatment effects have been found to spill over to non-target insects, such as bees, and more recently also to other animal groups, among them passerine birds. Very little is known, however, on the presence of neonicotinoids in other wild species at higher trophic levels. We present results on the presence of neonicotinoid residues in blood samples of a long-distant migratory food-specialist raptor, the European honey buzzard. Further, we investigate the spatial relationship between neonicotinoid residue prevalence in honey buzzards with that of crop fields where neonicotinoids are typically used. A majority of all blood samples contained neonicotinoids, thiacloprid accounting for most of the prevalence. While neonicotinoid residues were detected in both adults and nestlings, the methodological limit of quantification was exceeded only in nestlings. Neonicotinoids were present in all sampled nests. Neonicotinoid presence in honey buzzard nestlings' blood matched spatially with the presence of oilseed plant fields. These are the first observations of neonicotinoids in a diurnal raptor. For better understanding the potential negative sublethal of neonicotinoids in wild vertebrates, new (experimental) studies are needed. (c) 2018 The Authors. Published by Elsevier B.V.
  • Nolte, Dorothea; Boutaud, Esteve; Kotze, D. Johan; Schuldt, Andreas; Assmann, Thorsten (2019)
    The worldwide biodiversity crisis is ongoing. To slow down, or even halt future species loss it is important to identify potential drivers of extinction risk. Species traits can help to understand the underlying process of extinction risk. In a comprehensive study on 464 carabid beetle species, we used ordinal logistic regression to analyze the relationship of species traits to extinction risk in Central Europe, taking phylogenetic relatedness into account. To consider varying trait responses in different habitat types, we also tested models for species groups associated with different habitat types (forest, open, riparian and wetland). Our results identified three traits of particular importance as predictors for high extinction risk: (1) high habitat specialization, (2) small distribution range size (which is not considered in the categorization of the German Red List), and (3) large body size. Furthermore, large macropterous species showed high extinction risk. Overall, species associated with mountainous, coastal and open habitats generally revealed a high risk of extinction, while most forest species showed a low extinction risk. However, forest species with predatory feeding behavior were threatened, as were wetland species that reproduce in autumn. Phylogenetic relatedness had no influence on how species traits predict carabid beetle extinction risk. In the light of these results, management and recovery plans for species which exhibit characteristic traits strongly associated with extinction risks, as well as the conservation and restoration of mountain, coastal and open habitats, have to be prioritized.
  • Lambertucci, Sergio A.; Margalida, Antoni; Speziale, Karina L.; Amar, Arjun; Ballejo, Fernando; Bildstein, Keith L.; Blanco, Guillermo; Botha, Andre J.; Bowden, Christopher G. R.; Cortes-Avizanda, Ainara; Duriez, Olivier; Green, Rhys E.; Hiraldo, Fernando; Ogada, Darcy; Plaza, Pablo; Sanchez-Zapata, Jose A.; Santangeli, Andrea; Selva, Nuria; Spiegel, Orr; Donazar, Jose A. (2021)
    Vultures and condors are among the most threatened avian species in the world due to the impacts of human activities. Negative perceptions can contribute to these threats as some vulture species have been historically blamed for killing livestock. This perception of conflict has increased in recent years, associated with a viral spread of partial and biased information through social media and despite limited empirical support for these assertions. Here, we highlight that magnifying infrequent events of livestock being injured by vultures through publically shared videos or biased news items negatively impact efforts to conserve threatened populations of avian scavengers. We encourage environmental agencies, researchers, and practitioners to evaluate the reliability, frequency, and context of reports of vulture predation, weighing those results against the diverse and valuable contributions of vultures to environmental health and human well-being. We also encourage the development of awareness campaigns and improved livestock management practices, including commonly available nonlethal deterrence strategies, if needed. These actions are urgently required to allow the development of a more effective conservation strategy for vultures worldwide.
  • Veach, Victoria; Moilanen, Atte; Di Minin, Enrico (2017)
    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with similar to 20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss.