Browsing by Subject "DECONTAMINATION"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Friman, Mari; Kakko, Leila; Constantin, Camelia; Simojoki, Heli; Andersson, Maria A.; Nagy, Szabolcs; Salonen, Heidi; Andersson, Magnus (2019)
    Bacillus anthracis infecting cattle is usually identified based on the typical symptom: sudden death. Bacillus anthracis causing atypical symptoms may remain undiagnosed and represent a potential occupational health hazard for, that is veterinarians and producers, butchers and tanners. In the year 2004, one case of sudden death in a dairy farm in southern Finland was diagnosed as bovine anthrax. Four years later 2008, an atypical case of anthrax was diagnosed in the same holding. The bull was taken to the Production Animal Hospital of the Faculty of Veterinary Medicine, University of Helsinki because of fever, loss of appetite and a symmetrically swollen scrotal sac. Penicillin treatment cured the fever but not the swollen scrotum. Before the intended therapeutic castration, a punctuate consisting of 10 ml fluid collected into a syringe from the scrotal sac was cultivated on blood agar at 37 degrees C. After 24 hr, an almost pure culture of a completely non-hemolytic Bacillus cereus-like bacteria was obtained. The strain was identified as B. anthracis using Ba-specific primers by the Finnish Food Safety Authority (RUOKAVIRASTO). After the diagnosis, the bull was euthanized and destroyed, the personnel were treated with prophylactic antibiotics and the clinic was disinfected. In this particular case, treatment with water, Virkon S and lime seemed to be effective to eliminate endospores and vegetative cells since no relapses of anthrax have occurred in 10 years. This case is the last reported anthrax case in Finland.
  • Lang, Adam R.; Engelberg, Dirk L.; Walther, Clemens; Weiss, Martin; Bosco, Hauke; Jenkins, Alex; Livens, Francis R.; Law, Gareth T. W. (2019)
    Stainless steels can become contaminated with radionuclides at nuclear sites. Their disposal as radioactive waste would be costly. If the nature of steel contamination could be understood, effective decontamination strategies could be designed and implemented during nuclear site decommissioning in an effort to release the steels from regulatory control. Here, batch uptake experiments have been used to understand Sr and Cs (fission product radionuclides) uptake onto AISI Type 304 stainless steel under conditions representative of spent nuclear fuel storage (alkaline ponds) and PUREX nuclear fuel reprocessing (HNO3). Solution (ICP-MS) and surface measurements (GD-OES depth profiling, TOF-SIMS, and XPS) and kinetic modeling of Sr and Cs removal from solution were used to characterize their uptake onto the steel and define the chemical composition and structure of the passive layer formed on the steel surfaces. Under passivating conditions (when the steel was exposed to solutions representative of alkaline ponds and 3 and 6 M HNO3), Sr and Cs were maintained at the steel surface by sorption/selective incorporation into the Cr-rich passive film. In 12 M HNO3, corrosion and severe intergranular attack led to Sr diffusion into the passive layer and steel bulk. In HNO3, Sr and Cs accumulation was also commensurate with corrosion product (Fe and Cr) readsorption, and in the 12 M HNO3 system, XPS documented the presence of Sr and Cs chromates.