Browsing by Subject "DELIVERY-SYSTEMS"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Peltonen, Leena; Hirvonen, Jouni (2018)
    Poor solubility of drug compounds is a great issue in drug industry today and decreasing particle size is one efficient and simple way to overcome this challenge. Drug nanocrystals are solid nanosized drug particles, which are covered by a stabilizer layer. In nanoscale many physical properties, like compound solubility, are different from the solubility of bulk material, and due to this drug nanocrystals can reach supersaturation as compared to thermodynamic solubility. The most important effect of the smaller particle size is that dissolution rate is highly enhanced mainly due to the increased surface area. In this review the most important properties of nanocrystalline drug compounds are presented, with multiple examples of the development and characterization of nanocrystalline drug formulations.
  • Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo (2017)
    The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. (C) 2017 Elsevier B.V. All rights reserved.
  • Leopold, Anna; Verkhusha, Vladislav V. (2020)
    Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells andin vivowith light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
  • Sochor, Benedikt; Dudukcu, Ozgur; Luebtow, Michael M.; Schummer, Bernhard; Jaksch, Sebastian; Luxenhofer, Robert (2020)
    Drug-loaded polymer micelles or nanoparticles are being continuously explored in the fields of drug delivery and nanomedicine. Commonly, a simple core-shell structure is assumed, in which the core incorporates the drug and the corona provides steric shielding, colloidal stability, and prevents protein adsorption. Recently, the interactions of the dissolved drug with the micellar corona have received increasing attention. Here, using small-angle neutron scattering, we provide an in-depth study of the differences in polymer micelle morphology of a small selection of structurally closely related polymer micelles at different loadings with the model compound curcumin. This work supports a previous study using solid-state nuclear magnetic resonance spectroscopy and we confirm that the drug resides predominantly in the core of the micelle at low drug loading. As the drug loading increases, neutron scattering data suggests that an inner shell is formed, which we interpret as the corona also starting to incorporate the drug, whereas the outer shell mainly contains water and the polymer. The presented data clearly shows that a better understanding of the inner morphology and the impact of the hydrophilic block can be important parameters for improved drug loading in polymer micelles as well as provide insights into the structure-property relationship.
  • Haider, Malik Salman; Luebtow, Michael M.; Endres, Sebastian; Forster, Stefan; Flegler, Vanessa J.; Boettcher, Bettina; Aseyev, Vladimir; Pöppler, Ann-Christin; Luxenhofer, Robert (2020)
    Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.