Browsing by Subject "DENSE CORES"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Tatematsu, Ken'ichi; Liu, Tie; Kim, Gwanjeong; Yi, Hee-Weon; Lee, Jeong-Eun; Hirano, Naomi; Liu, Sheng-Yuan; Ohashi, Satoshi; Sanhueza, Patricio; Di Francesco, James; Evans, Neal J.; Fuller, Gary A.; Kandori, Ryo; Choi, Minho; Kang, Miju; Feng, Siyi; Hirota, Tomoya; Sakai, Takeshi; Lu, Xing; Lu'o'ng, Quang Nguyen; Thompson, Mark A.; Wu, Yuefang; Li, Di; Kim, Kee-Tae; Wang, Ke; Ristorcelli, Isabelle; Juvela, Mika; Toth, L. Viktor (2020)
    We mapped two molecular cloud cores in the Orion A cloud with the 7 m Array of the Atacama Compact Array (ACA) of the Atacama Large Millimeter/submillimeterArray (ALMA) and with the Nobeyama 45 m radio telescope. These cores have bright N2D+ emission in single-pointing observations with the Nobeyama 45 m radio telescope, have a relatively high deuterium fraction, and are thought to be close to the onset of star formation. One is a star-forming core, and the other is starless. These cores are located along filaments observed in N2H+ and show narrow line widths of 0.41 km s(-1) and 0.45 km s(-1) in N2D+, respectively, with the Nobeyama 45 m telescope. Both cores were detected with the ALMA ACA 7 m Array in the continuum and molecular lines at Band 6. The starless core G211 shows a clumpy structure with several sub-cores, which in turn show chemical differences. Also, the sub-cores in G211 have internal motions that are almost purely thermal. The starless sub-core G211D, in particular, shows a hint of the inverse P Cygni profile, suggesting infall motion. The star-forming core G210 shows an interesting spatial feature of two N2D+ peaks of similar intensity and radial velocity located symmetrically with respect to the single dust continuum peak. One interpretation is that the two N2D+ peaks represent an edge-on pseudo-disk. The CO outflow lobes, however, are not directed perpendicular to the line connecting both N2D+ peaks.
  • Dutta, Somnath; Lee, Chin-Fei; Liu, Tie; Hirano, Naomi; Liu, Sheng-Yuan; Tatematsu, Ken'ichi; Kim, Kee-Tae; Shang, Hsien; Sahu, Dipen; Kim, Gwanjeong; Moraghan, Anthony; Jhan, Kai-Syun; Hsu, Shih-Ying; Evans, Neal J.; Johnstone, Doug; Ward-Thompson, Derek; Kuan, Yi-Jehng; Lee, Chang Won; Lee, Jeong-Eun; Traficante, Alessio; Juvela, Mika; Vastel, Charlotte; Zhang, Qizhou; Sanhueza, Patricio; Soam, Archana; Kwon, Woojin; Bronfman, Leonardo; Eden, David; Goldsmith, Paul F.; He, Jinhua; Wu, Yuefang; Pelkonen, Veli-Matti; Qin, Sheng-Li; Li, Shanghuo; Li, Di (2020)
    Planck Galactic Cold Clumps (PGCCs) are considered to be the ideal targets to probe the early phases of star formation. We have conducted a survey of 72 young dense cores inside PGCCs in the Orion complex with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.3 mm (band 6) using three different configurations (resolutions similar to 035, 10, and 70) to statistically investigate their evolutionary stages and substructures. We have obtained images of the 1.3 mm continuum and molecular line emission ((CO)-C-12, and SiO) at an angular resolution of similar to 035 (similar to 140 au) with the combined arrays. We find 70 substructures within 48 detected dense cores with median dust mass similar to 0.093 M and deconvolved size similar to 027. Dense substructures are clearly detected within the central 1000 au of four candidate prestellar cores. The sizes and masses of the substructures in continuum emission are found to be significantly reduced with protostellar evolution from Class 0 to Class I. We also study the evolutionary change in the outflow characteristics through the course of protostellar mass accretion. A total of 37 sources exhibit CO outflows, and 20 (>50%) show high-velocity jets in SiO. The CO velocity extents (Delta Vs) span from 4 to 110 km s(-1) with outflow cavity opening angle width at 400 au ranging from [Theta(obs)](400) similar to 06-39, which corresponds to 334-1257. For the majority of the outflow sources, the Delta Vs show a positive correlation with [Theta(obs)](400), suggesting that as protostars undergo gravitational collapse, the cavity opening of a protostellar outflow widens and the protostars possibly generate more energetic outflows.
  • Tatematsu, Ken'ichi; Liu, Tie; Ohashi, Satoshi; Sanhueza, Patricio; Quang Nguyen Luong,; Hirota, Tomoya; Liu, Sheng-Yuan; Hirano, Naomi; Choi, Minho; Kang, Miju; Thompson, Mark A.; Fuller, Gary; Wu, Yuefang; Li, Di; Di Francesco, James; Kim, Kee-Tae; Wang, Ke; Ristorcelli, Isabelle; Juvela, Mika; Shinnaga, Hiroko; Cunningham, Maria; Saito, Masao; Lee, Jeong-Eun; Toth, L. Viktor; He, Jinhua; Sakai, Takeshi; Kim, Jungha; JCMT Large Program SCOPE Collabora; TRAO Key Science Program TOP Colla (2017)
    We observed 13 Planck cold clumps with the James Clerk Maxwell Telescope/SCUBA-2 and with the Nobeyama 45 m radio telescope. The N2H+ distribution obtained with the Nobeyama telescope is quite similar to SCUBA-2 dust distribution. The 82 GHz HC3N, 82 GHz CCS, and 94 GHz CCS emission are often distributed differently with respect to the N2H+ emission. The CCS emission, which is known to be abundant in starless molecular cloud cores, is often very clumpy in the observed targets. We made deep single-pointing observations in DNC, (HNC)-C-13, N2D+, and cyclic-C3H2 toward nine clumps. The detection rate of N2D+ is 50%. Furthermore, we observed the NH3 emission toward 15 Planck cold clumps to estimate the kinetic temperature, and confirmed that most targets are cold (less than or similar to 20 K). In two of the starless clumps we observed, the CCS emission is distributed as it surrounds the N2H+ core (chemically evolved gas), which resembles the case of L1544, a prestellar core showing collapse. In addition, we detected both DNC and N2D+. These two clumps are most likely on the verge of star formation. We introduce the chemical evolution factor (CEF) for starless cores to describe the chemical evolutionary stage, and analyze the observed Planck cold clumps.
  • Soam, Archana; Lee, Chang Won; Andersson, B-G; Maheswar, G.; Juvela, Mika; Liu, Tie; Kim, Gwanjeong; Rao, Ramprasad; Chung, Eun Jung; Kwon, Woojin; Ekta, S. (2019)
    L1521F is found to be forming multiple cores and it is cited as an example of the densest core with an embedded VeLLO in a highly dynamical environment. We present the core-scale magnetic fields (B-fields) in the near vicinity of the VeLLO L1521F-IRS using submillimeter polarization measurements at 850 mu m using JCMT POL-2. This is the first attempt to use high-sensitivity observations to map the sub-parsec-scale B-fields in a core with a VeLLO. The B-fields are ordered and very well connected to the parsec-scale field geometry seen in our earlier optical polarization observations and the large-scale structure seen in Planck dust polarization. The core-scale B-field strength estimated using the Davis-Chandrasekhar-Fermi relation is 330 +/- 100 mu G, which is more than 10 times the value we obtained in the envelope (the envelope in this paper is the "core envelope"). This indicates that B-fields are getting stronger on smaller scales. The magnetic energies are found to be 1 to 2 orders of magnitude higher than nonthermal kinetic energies in the envelope and core. This suggests that magnetic fields are more important than turbulence in the energy budget of L1521F. The mass-to-flux ratio of 2.3 +/- 0.7 suggests that the core is magnetically supercritical. The degree of polarization is steadily decreasing toward the denser part of the core with a power-law slope of -0.86.
  • Juvela, Mika; He, Jinhua; Pattle, Katherine; Liu, Tie; Bendo, George; Eden, David J.; Feher, Orsolya; Fich, Michel; Fuller, Gary; Hirano, Naomi; Kim, Kee-Tae; Li, Di; Liu, Sheng-Yuan; Malinen, Johanna; Marshall, Douglas J.; Paradis, Deborah; Parsons, Harriet; Pelkonen, Veli-Matti; Rawlings, Mark G.; Ristorcelli, Isabelle; Samal, Manash R.; Tatematsu, Ken'ichi; Thompson, Mark; Traficante, Alessio; Wang, Ke; Ward-Thompson, Derek; Wu, Yuefang; Yi, Hee-Weon; Yoo, Hyunju (2018)
    Context. Analysis of all-sky Planck submillimetre observations and the IRAS 100 mu m data has led to the detection of a population of Galactic cold clumps. The clumps can be used to study star formation and dust properties in a wide range of Galactic environments. Aims. Our aim is to measure dust spectral energy distribution ( SED) variations as a function of the spatial scale and the wavelength. Methods. We examined the SEDs at large scales using IRAS, Planck, and Herschel data. At smaller scales, we compared JCMT/SCUBA-2 850 mu m maps with Herschel data that were filtered using the SCUBA-2 pipeline. Clumps were extracted using the Fellwalker method, and their spectra were modelled as modified blackbody functions. Results. According to IRAS and Planck data, most fields have dust colour temperatures T-C similar to 14-18K and opacity spectral index values of beta = 1.5-1.9. The clumps and cores identified in SCUBA-2 maps have T similar to 13K and similar beta values. There are some indications of the dust emission spectrum becoming flatter at wavelengths longer than 500 mu m. In fits involving Planck data, the significance is limited by the uncertainty of the corrections for CO line contamination. The fits to the SPIRE data give a median beta value that is slightly above 1.8. In the joint SPIRE and SCUBA-2 850 mu m fits, the value decreases to beta similar to 1.6. Most of the observed T-beta anticorrelation can be explained by noise. Conclusions. The typical submillimetre opacity spectral index fi of cold clumps is found to be similar to 1.7. This is above the values of diffuse clouds, but lower than in some previous studies of dense clumps. There is only tentative evidence of a T-beta anticorrelation and beta decreasing at millimetre wavelengths.
  • Kim, Gwanjeong; Tatematsu, Ken'ichi; Liu, Tie; Yi, Hee-Weon; He, Jinhua; Hirano, Naomi; Liu, Sheng-Yuan; Choi, Minho; Sanhueza, Patricio; Toth, L. Viktor; Evans, Neal J.; Feng, Siyi; Juvela, Mika; Kim, Kee-Tae; Vastel, Charlotte; Lee, Jeong-Eun; Lu'o'ng, Quang Nguyen; Kang, Miju; Ristorcelli, Isabelle; Feher, Orsolya; Wu, Yuefang; Ohashi, Satoshi; Wang, Ke; Kandori, Ryo; Hirota, Tomoya; Sakai, Takeshi; Lu, Xing; Thompson, Mark A.; Fuller, Gary A.; Li, Di; Shinnaga, Hiroko; Kim, Jungha (2020)
    We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments (lambda Orionis, Orion A, Orion B, the Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94 GHz using the Nobeyama 45 m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N(2)H(+)and c-C3H2) and deuterated molecules (e.g., N(2)D(+)and DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores (>1 kpc). For lambda Orionis, Orion A, and Orion B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high-D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04 pc.
  • Padoan, Paolo; Pan, Liubin; Juvela, Mika; Haugbolle, Troels; Nordlund, Åke (2020)
    We address the problem of the origin of massive stars, namely the origin, path, and timescale of the mass flows that create them. Based on extensive numerical simulations, we propose a scenario where massive stars are assembled by large-scale, converging, inertial flows that naturally occur in supersonic turbulence. We refer to this scenario of massive-star formation as the inertial-inflow model. This model stems directly from the idea that the mass distribution of stars is primarily the result of turbulent fragmentation. Under this hypothesis, the statistical properties of turbulence determine the formation timescale and mass of prestellar cores, posing definite constraints on the formation mechanism of massive stars. We quantify such constraints by analyzing a simulation of supernova-driven turbulence in a 250 pc region of the interstellar medium, describing the formation of hundreds of massive stars over a time of approximately 30 Myr. Due to the large size of our statistical sample, we can say with full confidence that massive stars in general do not form from the collapse of massive cores nor from competitive accretion, as both models are incompatible with the numerical results. We also compute synthetic continuum observables in the Herschel and ALMA bands. We find that, depending on the distance of the observed regions, estimates of core mass based on commonly used methods may exceed the actual core masses by up to two orders of magnitude and that there is essentially no correlation between estimated and real core masses.