Browsing by Subject "DEPENDENT RNA-POLYMERASE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Domanska, Ausra; Guryanov, Sergey; Butcher, Sarah J. (2021)
    Parechoviruses belong to the genus Parechovirus within the family Picornaviridae and are non-enveloped icosahedral viruses with a single-stranded RNA genome. Parechoviruses include human and animal pathogens classified into six species. Those that infect humans belong to the Parechovirus A species and can cause infections ranging from mild gastrointestinal or respiratory illness to severe neonatal sepsis. There are no approved antivirals available to treat parechovirus (nor any other picornavirus) infections. In this parechovirus review, we focus on the cleaved protein products resulting from the polyprotein processing after translation comparing and contrasting their known or predicted structures and functions to those of other picornaviruses. The review also includes our original analysis from sequence and structure prediction. This review highlights significant structural differences between parechoviral and other picornaviral proteins, suggesting that parechovirus drug development should specifically be directed to parechoviral targets.
  • Lohmus, Andres; Hafren, Anders; Mäkinen, Kristiina (2017)
    We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3' end of viral RNA. Progression into replication involves CP regulation by both CK2 phosphorylation and chaperones CPIP and HSP70.
  • Rajamaki, Minna-Liisa; Sikorskaite-Gudziuniene, Sidona; Sarmah, Nandita; Varjosalo, Markku; Valkonen, Jari P. T. (2020)
    BackgroundInfection of plants by viruses interferes with expression and subcellular localization of plant proteins. Potyviruses comprise the largest and most economically damaging group of plant-infecting RNA viruses. In virus-infected cells, at least two potyviral proteins localize to nucleus but reasons remain partly unknown.ResultsIn this study, we examined changes in the nuclear proteome of leaf cells from a diploid potato line (Solanum tuberosum L.) after infection with potato virus A (PVA; genus Potyvirus; Potyviridae) and compared the data with that acquired for healthy leaves. Gel-free liquid chromatography-coupled to tandem mass spectrometry was used to identify 807 nuclear proteins in the potato line v2-108; of these proteins, 370 were detected in at least two samples of healthy leaves. A total of 313 proteins were common in at least two samples of healthy and PVA-infected leaves; of these proteins, 8 showed differential accumulation. Sixteen proteins were detected exclusively in the samples from PVA-infected leaves, whereas other 16 proteins were unique to healthy leaves. The protein Dnajc14 was only detected in healthy leaves, whereas different ribosomal proteins, ribosome-biogenesis proteins, and RNA splicing-related proteins were over-represented in the nuclei of PVA-infected leaves. Two virus-encoded proteins were identified in the samples of PVA-infected leaves.ConclusionsOur results show that PVA infection alters especially ribosomes and splicing-related proteins in the nucleus of potato leaves. The data increase our understanding of potyvirus infection and the role of nucleus in infection. To our knowledge, this is the first study of the nuclear proteome of potato leaves and one of the few studies of changes occurring in nuclear proteomes in response to plant virus infection.
  • Lohmus, Andres; Varjosalo, Markku; Mäkinen, Kristiina (2016)
    The definition of the precise molecular composition of membranous replication compartments is a key to understanding the mechanisms of virus multiplication. Here, we set out to investigate the protein composition of the potyviral replication complexes. We purified the potyviral 6K2 protein-induced membranous structures from Potato virus A (PVA)-infected Nicotiana benthamiana plants. For this purpose, the 6K2 protein, which is the main inducer of potyviral membrane rearrangements, was expressed in fusion with an N-terminal Twin-Strep-tag and Cerulean fluorescent protein (SC6K) from the infectious PVA cDNA. A non-tagged Cerulean-6K2 (C6K) virus and the SC6K protein alone in the absence of infection were used as controls. A purification scheme exploiting discontinuous sucrose gradient centrifugation followed by Strep-tag-based affinity chromatography was developed. Both (+)- and (-)-strand PVA RNA and viral protein VPg were co-purified specifically with the affinity tagged PVA-SC6K. The purified samples, which contained individual vesicles and membrane clusters, were subjected to mass spectrometry analysis. Data analysis revealed that many of the detected viral and host proteins were either significantly enriched or fully specifically present in PVA-SC6K samples when compared with the controls. Eight of eleven potyviral proteins were identified with high confidence from the purified membrane structures formed during PVA infection. Ribosomal proteins were identified from the 6K2-induced membranes only in the presence of a replicating virus, reinforcing the tight coupling between replication and translation. A substantial number of proteins associating with chloroplasts and several host proteins previously linked with potyvirus replication complexes were co-purified with PVA-derived SC6K, supporting the conclusion that the host proteins identified in this study may have relevance in PVA replication.
  • Niehl, Annette; Soininen, Marjukka; Poranen, Minna Marjetta; Heinlein, Manfred (2018)
    Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production. Using components of the bacteriophage phi6, we engineered a stable and accurate invivo dsRNA production system in Pseudomonas syringae bacteria. Unlike other invitro or invivo dsRNA production systems that rely on DNA transcription and postsynthetic alignment of single-stranded RNA molecules, the phi6 system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, thus allowing production of high-quality, long dsRNA molecules. The phi6 replication complex was reprogrammed to multiply dsRNA sequences homologous to tobacco mosaic virus (TMV) by replacing the coding regions within two of the three phi6 genome segments with TMV sequences and introduction of these constructs into P.syringae together with the third phi6 segment, which encodes the components of the phi6 replication complex. The stable production of TMV dsRNA was achieved by combining all the three phi6 genome segments and by maintaining the natural dsRNA sizes and sequence elements required for efficient replication and packaging of the segments. The produced TMV-derived dsRNAs inhibited TMV propagation when applied to infected Nicotiana benthamiana plants. The established dsRNA production system enables the broad application of dsRNA molecules as an efficient, highly flexible, nontransgenic and environmentally friendly approach for protecting crops against viruses and other pathogens.