Browsing by Subject "DIBLOCK COPOLYMER"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Pooch, Fabian; Sliepen, Marjolein; Knudsen, Kenneth D.; Nyström, Bo; Tenhu, Heikki; Winnik, Francoise M. (2019)
    Poly(2-isopropyl-2-oxazoline)-b-poly(lactide) (PiPOx-b-PLA) diblock copolymers comprise two miscible blocks: the hydrophilic and thermosensitive PiPOx and the hydrophobic PLA, a biocompatible and biodegradable polyester. They self-assemble in water, forming stable dispersions of nanoparticles with hydrodynamic radii (R-h) ranging from similar to 18 to 60 nm, depending on their molar mass, the relative size of the two blocks, and the configuration of the lactide unit. Evidence from H-1 nuclear magnetic resonance spectroscopy, light scattering, small-angle neutron scattering, and cryo-transmission electron microscopy indicates that the nanoparticles do not adopt the typical core-shell morphology. Aqueous nanoparticle dispersions heated from 20 to 80 degrees C were monitored by turbidimetry and microcalorimetry. Nanoparticles of copolymers containing a poly(DL-lactide) block coagulated irreversibly upon heating to 50 degrees C, forming particles' of various shapes (R-h similar to 200-500 nm). Dispersions of PiPOx-b-poly(L-lactide) coagulated to a lesser extent or remained stable upon heating. From the entire experimental evidence, we conclude that PiPOx-b-PLA nanoparticles consist of a core of PLA/PiPOx chains associated via dipole-dipole interactions of the PLA and PiPOx carbonyl groups. The core is surrounded by tethered PiPOx loops and tails responsible for the colloidal stability of the nanoparticles in water. While the core of all nanoparticles studied contains associated PiPOx and PLA blocks, fine details of the nanoparticles morphology vary predictably with the size and composition of the copolymers, yielding particles of distinctive thermosensitivity in aqueous dispersions.
  • Jiang, Tao; Aseyev, Vladimir; Niskanen, Jukka; Hietala, Sami; Zhang, Qilu; Tenhu, Heikki (2020)
    Manipulation of self-assembly behavior of copolymers via environmental change is attractive in the fabrication of smart polymeric materials. We present tunable self-assembly behavior of graft copolymers, poly(sulfobetaine methacrylate)-graft-poly[oligo(ethylene glycol) methyl ether methacrylate)-co-di(ethylene glycol) methyl ether methacrylate] (PSBM-g-P(OEGMA-co-DEGMA)). Upon heating the aqueous solutions, the graft copolymers undergo a transition from micelles with PSBM cores to unimers (i.e., individual macromolecules) and then to reversed micelles with P(OEGMA-co-DEGMA) cores, thus demonstrating the tunability of the self-assembling through temperature change. In the presence of salt the temperature response of PSBM is eliminated, and the structure of the micelles with the P(OEGMA-co-DEGMA) core changes. Moreover, for the graft copolymer with long side chains, micelles with aggregation number similar to 2 were formed with a PSBM core at low temperature, which is ascribed to the steric effect of the P(OEGMA-co-DEGMA) shell.
  • Baddam, Vikram; Valinen, Lauri; Tenhu, Heikki (2021)
    Poly [(vinylbenzyl) trimethylammonium chloride] (PVBTMAC) has been used as a stabilizer in the polymerization-induced self-assembly polymerizations of diacetone acrylamide (DAAM). A whole spectrum of particle morphologies was obtained simply by adjusting the ionic strength of the reaction mixtures; no dilution of the cationic charges with noncharged comonomers or with noncharged polymers was needed. In addition to the ionic strength, the effects of solid content and the length of the PDAAM block on the morphologies of the particles were studied in detail. The experiments are a continuation to previous studies on solution properties of PVBTMAC. It has been shown earlier that the solubility of the polycation may be tuned with counterions. Hydrophobic triflate ions induce an upper critical solution temperature behavior. In the present case, the chains bound to hydrophobic cores of the particles show either a one-step phase separation in aqueous triflate solutions or under certain conditions, a two-step transition. The step-wise transition is typical for responsive polymers with limited mobility.