Browsing by Subject "DICARBOXYLIC-ACIDS"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Krieger, Ulrich K.; Siegrist, Franziska; Marcolli, Claudia; Emanuelsson, Eva U.; Gobel, Freya M.; Bilde, Merete; Marsh, Aleksandra; Reid, Jonathan P.; Huisman, Andrew J.; Riipinen, Ilona; Hyttinen, Noora; Myllys, Nanna; Kurten, Theo; Bannan, Thomas; Percival, Carl J.; Topping, David (2018)
    To predict atmospheric partitioning of organic compounds between gas and aerosol particle phase based on explicit models for gas phase chemistry, saturation vapor pressures of the compounds need to be estimated. Estimation methods based on functional group contributions require training sets of compounds with well-established saturation vapor pressures. However, vapor pressures of semivolatile and low-volatility organic molecules at atmospheric temperatures reported in the literature often differ by several orders of magnitude between measurement techniques. These discrepancies exceed the stated uncertainty of each technique which is generally reported to be smaller than a factor of 2. At present, there is no general reference technique for measuring saturation vapor pressures of atmospherically relevant compounds with low vapor pressures at atmospheric temperatures. To address this problem, we measured vapor pressures with different techniques over a wide temperature range for intercomparison and to establish a reliable training set. We determined saturation vapor pressures for the homologous series of polyethylene glycols (H-(O-CH2-CH2)(n)-OH) for n = 3 to n = 8 ranging in vapor pressure at 298 K from 10(-7) to 5 x 10(-2) Pa and compare them with quantum chemistry calculations. Such a homologous series provides a reference set that covers several orders of magnitude in saturation vapor pressure, allowing a critical assessment of the lower limits of detection of vapor pressures for the different techniques as well as permitting the identification of potential sources of systematic error. Also, internal consistency within the series allows outlying data to be rejected more easily. Most of the measured vapor pressures agreed within the stated uncertainty range. Deviations mostly occurred for vapor pressure values approaching the lower detection limit of a technique. The good agreement between the measurement techniques (some of which are sensitive to the mass accommodation coefficient and some not) suggests that the mass accommodation coefficients of the studied compounds are close to unity. The quantum chemistry calculations were about 1 order of magnitude higher than the measurements. We find that extrapolation of vapor pressures from elevated to atmospheric temperatures is permissible over a range of about 100 K for these compounds, suggesting that measurements should be performed best at temperatures yielding the highest-accuracy data, allowing subsequent extrapolation to atmospheric temperatures.
  • Kurten, Theo; Tiusanen, Kirsi; Roldin, Pontus; Rissanen, Matti; Luy, Jan-Niclas; Boy, Michael; Ehn, Mikael; Donahue, Neil (2016)
    COSMO-RS (conductor-like screening model for real solvents) and three different group-contribution methods were used to compute saturation (subcooled) liquid vapor pressures for 16 possible products of ozone-initiated alpha-pinene autoxidation, with elemental compositions C10H16O4-10 and C20H30O10-12. The saturation vapor pressures predicted by the different methods varied widely. COSMO-RS predicted relatively high saturation vapor pressures values in the range of 10(-6) to 10(-10) bar for the C10H16O4-10 "monomers", and 10(-11) to 10(-16) bar for the C20H30O10-12 "dimers". The group-contribution methods predicted significantly (up to 8 order of magnitude) lower saturation vapor pressures for most of the more highly oxidized monomers. For the differs, the COSMO-RS predictions were within the (wide) range spanned by the three group-contribution methods. The main reason for the discrepancies between the methods is likely that the group-contribution methods do not contain the necessary parameters to accurately treat autoxidation products containing multiple hydroperoxide, peroxy acid or peroxide functional groups, which form intramolecular hydrogen bonds with each other. While the COSMO-RS saturation vapor pressures for these systems may be overestimated, the results strongly indicate that despite their high O:C ratios, the volatilities of the autoxidation products of alpha-pinene (and possibly other atmospherically relevant alkenes) are not necessarily extremely low. In other words, while autoxidation products are able to, adsorb onto aerosol particles, their evaporation back into the gas phase cannot be assumed to be negligible, especially from the smallest nanometer-scale particles. Their observed effective contribution to aerosol particle growth may therefore involve rapid heterogeneous reactions (reactive uptake) rather than effectively irreversible physical absorption.
  • Liu, Ling; Kupiainen-Maatta, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurten, Theo; Vehkamaki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng (2018)
    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with di↵erent reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acids, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reaction using Density Functional Theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. In atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, andthe product can further participate in the clustering process. The di↵erences in cluster structures and properties induced by the hydration reaction lead to significant di↵erences in cluster formation rates and pathways at relatively low temperatures.
  • Häkkinen, Silja A. K.; McNeill, V. Faye; Riipinen, Ilona (2014)
  • Yli-Juuti, Taina; Zardini, Alessandro A.; Eriksson, Axel C.; Hansen, Anne Maria K.; Pagels, Joakim H.; Swietlicki, Erik; Svenningsson, Birgitta; Glasius, Marianne; Worsnop, Douglas R.; Riipinen, Ilona; Bilde, Merete (2013)