Browsing by Subject "DIGITAL SKY SURVEY"

Sort by: Order: Results:

Now showing items 1-20 of 35
  • Smolcic, V.; Miettinen, O.; Tomicic, N.; Zamorani, G.; Finoguenov, A.; Lemaux, B. C.; Aravena, M.; Capak, P.; Chiang, Y. -K.; Civano, F.; Delvecchio, I.; Ilbert, O.; Jurlin, N.; Karim, A.; Laigle, C.; Le Fevre, O.; Marchesi, S.; McCracken, H. J.; Riechers, D. A.; Salvato, M.; Schinnerer, E.; Tasca, L.; Toft, S. (2017)
    We investigate the environment of 23 submillimetre galaxies (SMGs) drawn from a signal-to-noise (S/N)-limited sample of SMGs originally discovered in the James Clerk Maxwell Telescope (JCMT)/AzTEC 1.1 mm continuum survey of a Cosmic Evolution Survey (COSMOS) subfield and then followed up with the Submillimetre Array and Plateau de Bure Interferometer at 890 mu m and 1.3 mm, respectively. These SMGs already have well-defined multiwavelength counterparts and redshifts. We also analyse the environments of four COSMOS SMGs spectroscopically confirmed to lie at redshifts z(spec) > 4 : 5, and one at z(spec) = 2 : 49 resulting in a total SMG sample size of 28. We search for overdensities using the COSMOS photometric redshifts based on over 30 UV-NIR photometric measurements including the new UltraVISTA data release 2 and Spitzer/SPLASH data, and reaching an accuracy of sigma(Delta z/(1+z)) = (1 + z) = 0 : 0067 (0 : 0155) at z <3 : 5 (> 3.5). To identify overdensities we apply the Voronoi tessellation analysis, and estimate the redshift-space overdensity estimator delta(g) as a function of distance from the SMG and/or overdensity centre. We test and validate our approach via simulations, X-ray detected groups or clusters, and spectroscopic verifications using VUDS and zCOSMOS catalogues which show that even with photometric redshifts in the COSMOS field we can e ffi ciently retrieve overdensities out to z approximate to 5. Our results yield that 11 out of 23 (48%) JCMT/AzTEC 1.1 mm SMGs occupy overdense environments. Considering the entire JCMT/AzTEC 1.1 mm S = N >= 4 sample and taking the expected fraction of spurious detections into account, this means that 35-61% of the SMGs in the S/N-limited sample occupy overdense environments. We perform an X-ray stacking analysis in the 0.5-2 keV band using a 32 '' aperture and our SMG positions, and find statistically significant detections. For our z <2 subsample we find an average flux of (4.0 +/- 0.8) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2.8 x 10(13) M-circle dot. The z > 2 subsample yields an average flux of (1.3 +/- 0.5) x 10(-16) erg s(-1) cm(-2) and a corresponding total mass of M-200 = 2 x 10(13) M-circle dot. Our results suggest a higher occurrence of SMGs occupying overdense environments at z >= 3 than at z <3. This may be understood if highly star-forming galaxies can only be formed in the highest peaks of the density field tracing the most massive dark matter haloes at early cosmic epochs, while at later times cosmic structure may have matured su ffi ciently that more modest overdensities correspond to su ffi ciently massive haloes to form SMGs.
  • Montanari, Francesco; Räsänen, Syksy (2017)
    If the FRW metric is a good approximation on large scales, then the distance and the expansion rate, as well different notions of distance, satisfy certain consistency conditions. We fit the JLA SNIa distance data to determine the expected amplitude of the violation of these conditions if accelerated expansion is due to backreaction. Adding cosmic clock and BAO expansion rate data, we also model-independently determine the current observational limits on such violation. We find that the predicted maximum backreaction amplitude vertical bar k(H)vertical bar less than or similar to 1 (95% C.I.) is of the same order as the current observational constraints vertical bar k(H)vertical bar less than or similar to 1, the precise numbers depending on the adopted fitting method (polynomials or splines) and stellar population evolution model. We also find that constraints on the value of Ho determined from expansion rate data are sensitive to the stellar evolution model. We forecast constraints from projected LSST+Euclid-like SNIa plus Euclid galaxy differential age data. We find improvement by factor of 6 for the backreaction case and 3 for the model-independent case, probing an interesting region of possible signatures.
  • Mirkazemi, M.; Finoguenov, A.; Pereira, M. J.; Tanaka, M.; Lerchster, M.; Brimioulle, F.; Egami, E.; Kettula, K.; Erfanianfar, G.; McCracken, H. J.; Mellier, Y.; Kneib, J. P.; Rykoff, E.; Seitz, S.; Erben, T.; Taylor, J. E. (2015)
  • Zheng, Yirui; Wild, Vivienne; Lahen, Natalia; Johansson, Peter H.; Law, David; Weaver, John R.; Jimenez, Noelia (2020)
    Recent integral field spectroscopic (IFS) surveys have revealed radial gradients in the optical spectral indices of post-starburst (PSB) galaxies, which can be used to constrain their formation histories. We study the spectral indices of post-processed mock IFS datacubes of binary merger simulations, carefully matched to the properties of the MaNGA IFS survey, with a variety of black hole (BH) feedback models, progenitor galaxies, orbits, and mass ratios. Based on our simulation sample, we find that only major mergers on prograde-prograde or retrograde-prograde orbits in combination with a mechanical BH feedback model can form galaxies with weak enough ongoing star formation, and therefore absent H alpha emission, to be selected by traditional PSB selection methods. We find strong fluctuations in nebular emission line strengths, even within the PSB phase, suggesting that H alpha selected PSBs are only a subsample of the underlying population. The global PSB population can be more robustly identified using stellar continuum-based approaches. The difficulty in reproducing the very young PSBs in simulations potentially indicates that new sub-resolution star formation recipes are required to properly model the process of star formation quenching. In our simulations, we find that the starburst peaks at the same time at all radii, but is stronger and more prolonged in the inner regions. This results in a strong time evolution in the radial gradients of the spectral indices that can be used to estimate the age of the starburst without reliance on detailed star formation histories from spectral synthesis models.
  • Euclid Collaboration; Adam, R.; Kurki-Suonio, H. (2019)
    Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates, which is particularly challenging at high redshift. The Euclid wide survey will cover 15 000 deg(2) of the sky, avoiding contamination by light from our Galaxy and our solar system in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift similar to 2 and possibly higher. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC), fourth in a series of similar challenges. The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations down to masses of M-200 similar to 10(13.25) M-circle dot. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to 80% completeness for a mean purity of 80% down to masses of 10(14) M-circle dot and up to redshift z = 2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the Adaptive Matched Identifier of Clustered Objects (AMICO) code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.
  • Balogh, Michael L.; Mcgee, Sean L.; Mok, Angus; Muzzin, Adam; van der Burg, Remco F. J.; Bower, Richard G.; Finoguenov, Alexis; Hoekstra, Henk; Lidman, Chris; Mulchaey, John S.; Noble, Allison; Parker, Laura C.; Tanaka, Masayuki; Wilman, David J.; Webb, Tracy; Wilson, Gillian; Yee, Howard K. C. (2016)
    We present an analysis of galaxies in groups and clusters at 0.8 <z <1.2, from the GCLASS and GEEC2 spectroscopic surveys. We compute a 'conversion fraction' f(convert) that represents the fraction of galaxies that were prematurely quenched by their environment. For massive galaxies, M-star > 10(10.3) M-circle dot, we find f(convert) similar to 0.4 in the groups and similar to 0.6 in the clusters, similar to comparable measurements at z = 0. This means the time between first accretion into a more massive halo and final star formation quenching is t(p) similar to 2 Gyr. This is substantially longer than the estimated time required for a galaxy's star formation rate to become zero once it starts to decline, suggesting there is a long delay time during which little differential evolution occurs. In contrast with local observations we find evidence that this delay time-scale may depend on stellarmass, with t(p) approaching t(Hubble) for M-star similar to 10(9.5) M-circle dot. The result suggests that the delay time must not only be much shorter than it is today, but may also depend on stellar mass in a way that is not consistent with a simple evolution in proportion to the dynamical time. Instead, we find the data are well-matched by a model in which the decline in star formation is due to 'overconsumption', the exhaustion of a gas reservoir through star formation and expulsion via modest outflows in the absence of cosmological accretion. Dynamical gas removal processes, which are likely dominant in quenching newly accreted satellites today, may play only a secondary role at z = 1.
  • CORE Collaboration; Di Valentino, E.; Kiiveri, K.; Kurki-Suonio, H.; Lindholm, V.; Väliviita, J. (2018)
    We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ACDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ACDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed parameter space with figures of merit for various models increasing by as much as similar to 10(7) as compared to Planck 2015, and 10(5) with respect to Planck 2015 + future BAO measurements.
  • Furnell, Kate E.; Collins, Chris A.; Kelvin, Lee S.; Clerc, Nicolas; Baldry, Ivan K.; Finoguenov, Alexis; Erfanianfar, Ghazaleh; Comparat, Johan; Schneider, Donald P. (2018)
    We present a sample of 329 low-to intermediate-redshift (0.05 <z
  • Georgakakis, A.; Comparat, J.; Merloni, A.; Ciesla, L.; Aird, J.; Finoguenov, A. (2019)
    A semi-empirical model is presented that describes the distribution of active galactic nuclei (AGNs) on the cosmicweb. It populates dark-matter haloes in N-body simulations (MultiDark) with galaxy stellar masses using empirical relations based on abundance matching techniques, and then paints accretion events on these galaxies using state-of-the-art measurements of the AGN occupation of galaxies. The explicit assumption is that the large-scale distribution of AGN is independent of the physics of black hole fuelling. The model is shown to be consistent with current measurements of the two-point correlation function of AGN samples. It is then used to make inferences on the halo occupation of the AGN population. Mock AGNs are found in haloes with a broad distribution of masses with a mode of approximate to 10(12) h(-1) M-circle dot and a tail extending to cluster-size haloes. The clustering properties of the model AGN depend only weakly on accretion luminosity and redshift. The fraction of satellite AGN in the model increases steeply toward more massive haloes, in contrast with some recent observational results. This discrepancy, if confirmed, could point to a dependence of the halo occupation of AGN on the physics of black hole fuelling.
  • Deshev, Boris; Finoguenov, Alexis; Verdugo, Miguel; Ziegler, Bodo; Park, Changbom; Hwang, Ho Seong; Haines, Christopher; Kamphuis, Peter; Tamm, Antti; Einasto, Maret; Hwang, Narae; Park, Byeong-Gon (2017)
    Aims. The mergers of galaxy clusters are the most energetic events in the Universe after the Big Bang. With the increased availability of multi-object spectroscopy and X-ray data, an ever increasing fraction of local clusters are recognised as exhibiting signs of recent or past merging events on various scales. Our goal is to probe how these mergers affect the evolution and content of their member galaxies. We specifically aim to answer the following questions: is the quenching of star formation in merging clusters enhanced when compared with relaxed clusters? Is the quenching preceded by a (short-lived) burst of star formation? Methods. We obtained optical spectroscopy of > 400 galaxies in the field of the merging cluster Abell 520. We combine these observations with archival data to obtain a comprehensive picture of the state of star formation in the members of this merging cluster. Finally, we compare these observations with a control sample of ten non-merging clusters at the same redshift from The Arizona Cluster Redshift Survey (ACReS). We split the member galaxies into passive, star forming or recently quenched depending on their spectra. Results. The core of the merger shows a decreased fraction of star forming galaxies compared to clusters in the non-merging sample. This region, dominated by passive galaxies, is extended along the axis of the merger. We find evidence of rapid quenching of the galaxies during the core passage with no signs of a star burst on the time scales of the merger (less than or similar to 0.4 Gyr). Additionally, we report the tentative discovery of an infalling group along the main filament feeding the merger, currently at similar to 2 : 5 Mpc from the merger centre. This group contains a high fraction of star forming galaxies as well as approximately two thirds of all the recently quenched galaxies in our survey.
  • McAlpine, Stuart; Harrison, Chris M.; Rosario, David J.; Alexander, David M.; Ellison, Sara L.; Johansson, Peter H.; Patton, David R. (2020)
    We investigate the connection between galaxy-galaxy mergers and enhanced black hole (BH) growth using the cosmological hydrodynamical EAGLE simulation. We do this via three methods of analysis, investigating: the merger fraction of AGN, the AGN fraction of merging systems, and the AGN fraction of galaxies with close companions. In each case, we find an increased abundance of AGN within merging systems relative to control samples of inactive or isolated galaxies (by up to a factor of approximate to 3 depending on the analysis method used), confirming that mergers are enhancing BH accretion rates for at least a subset of the galaxy population. The greatest excess of AGN triggered via a merger are found in lower mass (M-* similar to 10(10) M-circle dot) gas rich (f(gas) > 0.2) central galaxies with lower mass BHs (M-BH similar to 10(7) M-circle dot) at lower redshifts (z <1). We find no enhancement of AGN triggered via mergers in more massive galaxies (M-* greater than or similar to 10(11) M-circle dot). The enhancement of AGN is not uniform throughout the phases of a merger, and instead peaks within the early remnants of merging systems (typically lagging approximate to 300 Myr post-coalescence of the two galaxies at z = 0.5). We argue that neither major (M-*,M-1/M-*,M-2 = 1/4) nor minor mergers (1/10 <M-*,M-1/M-*,M-2 <1/4) are statistically relevant for enhancing BH masses globally. Whilst at all redshifts the galaxies experiencing a merger have accretion rates that are on average 2-3 times that of isolated galaxies, the majority of mass that is accreted on to BHs occurs outside the periods of a merger. We compute that on average no more than 15 per cent of a BHs final day mass comes from the enhanced accretion rates triggered via a merger.
  • Renk, Janina; Zumalacarregui, Miguel; Montanari, Francesco; Barreira, Alexandre (2017)
    Cosmological models with Galileon gravity are an alternative to the standard ACDM paradigm with testable predictions at the level of its self-accelerating solutions for the expansion history, as well as large-scale structure formation. Here, we place constraints on the full parameter space of these models using data from the cosmic microwave background (CMB) (including lensing), baryonic acoustic oscillations (BAO) and the Integrated Sachs Wolfe (ISW) effect. We pay special attention to the ISW effect for which we use the cross spectra, C-l(Tg), of CMB temperature maps and foreground galaxies from the WISE survey. The sign of C-l(Tg) is set by the time evolution of the lensing potential in the redshift range of the galaxy sample: it is positive if the potential decays (like in ACDM), negative if it deepens. We constrain three subsets of Galileon gravity separately known as the Cubic, Quartic and Quintic Galileons. The cubic Galileon model predicts a negative C-l(Tg) and exhibits a 7.8 sigma tension with the data, which effectively rules it out. For the quartic and quintic models the ISW data also rule out a significant portion of the parameter space but permit regions where the goodness-of-fit is comparable to ACDM. The data prefers a non zero sum of the neutrino masses (Sigma m(v) approximate to 0.5eV) with similar to 5 sigma significance in these models. The best-fitting models have values of Ho consistent with local determinations, thereby avoiding the tension that exists in ACDM. We also identify and discuss a similar to 2 sigma tension that Galileon gravity exhibits with recent BAO measurements. Our analysis shows overall that Galileon cosmologies cannot be ruled out by current data but future lensing, BAO and ISW data hold strong potential to do so.
  • Ford, E. Darragh; Laigle, C.; Gozaliasl, G.; Pichon, C.; Devriendt, J.; Slyz, A.; Arnouts, S.; Dubois, Y.; Finoguenov, A.; Griffiths, R.; Kraljic, K.; Pan, H.; Peirani, S.; Sarron, F. (2019)
    Cosmic filaments are the channel through which galaxy groups assemble their mass. Cosmic connectivity, namely the number of filaments connected to a given group, is therefore expected to be an important ingredient in shaping group properties. The local connectivity is measured in COSMOS around X-ray-detected groups between redshift 0.5 and 1.2. To this end, large-scale filaments are extracted using the accurate photometric redshifts of the COSMOS2015 catalogue in two-dimensional slices of thickness 120 comoving Mpc centred on the group's redshift. The link between connectivity, group mass, and the properties of the brightest group galaxy (BGG) is investigated. The same measurement is carried out on mocks extracted from the light-cone of the hydrodynamical simulation HORIZON-AGN in order to control systematics. More massive groups are on average more connected. At fixed group mass in low-mass groups, BGG mass is slightly enhanced at high connectivity, while in high-mass groups BGG mass is lower at higher connectivity. Groups with a star-forming BGG have on average a lower connectivity at given mass. From the analysis of the HORIZON-AGN simulation, we postulate that different connectivities trace different paths of group mass assembly: at high group mass, groups with higher connectivity are more likely to have grown through a recent major merger, which might be in turn the reason for the quenching of the BGG. Future large-field photometric surveys, such as Euclid and LSST, will be able to confirm and extend these results by probing a wider mass range and a larger variety of environment.
  • Patton, David R.; Wilson, Kieran D.; Metrow, Colin J.; Ellison, Sara L.; Torrey, Paul; Brown, Westley; Hani, Maan H.; McAlpine, Stuart; Moreno, Jorge; Woo, Joanna (2020)
    We use the IllustrisTNG cosmological hydrodynamical simulations to investigate how the specific star formation rates (sSFRs) of massive galaxies (M-* > 10(10) M-circle dot) depend on the distance to their closest companions. We estimate sSFR enhancements by comparing with control samples that are matched in redshift, stellar mass, local density, and isolation, and we restrict our analysis to pairs with stellar mass ratios of 0.1 to 10. At small separations (similar to 15 kpc), the mean sSFR is enhanced by a factor of 2.0 +/- 0.1 in the flagship (110.7Mpc)(3) simulation (TNG100-1). Statistically significant enhancements extend out to 3D separations of 280 kpc in the (302.6Mpc)(3) simulation (TNG300-1). We find similar trends in the EAGLE and Illustris simulations, although their sSFR enhancements are lower than those in TNG100-1 by about a factor of two. Enhancements in IllustrisTNG galaxies are seen throughout the redshift range explored (0
  • Campbell, David J. R.; Frenk, Carlos S.; Jenkins, Adrian; Eke, Vincent R.; Navarro, Julio F.; Sawala, Till; Schaller, Matthieu; Fattahi, Azadeh; Oman, Kyle A.; Theuns, Tom (2017)
    The observed stellar kinematics of dispersion-supported galaxies are often used to measure dynamical masses. Recently, several analytical relationships between the stellar line-of-sight velocity dispersion, the projected (2D) or deprojected (3D) half-light radius and the total mass enclosed within the half-light radius, relying on the spherical Jeans equation, have been proposed. Here, we use the APOSTLE cosmological hydrodynamical simulations of the Local Group to test the validity and accuracy of such mass estimators for both dispersion and rotation-supported galaxies, for field and satellite galaxies, and for galaxies of varying masses, shapes and velocity dispersion anisotropies. We find that the mass estimators of Walker et al. and Wolf et al. are able to recover the masses of dispersion-dominated systems with little systematic bias, but with a 1 sigma scatter of 25 and 23 per cent, respectively. The error on the estimated mass is dominated by the impact of the 3D shape of the stellar mass distribution, which is difficult to constrain observationally. This intrinsic scatter becomes the dominant source of uncertainty in the masses estimated for galaxies like the dwarf spheroidal (dSph) satellites of the Milky Way, where the observational errors in their sizes and velocity dispersions are small. Such scatter may also affect the inner density slopes of dSphs derived from multiple stellar populations, relaxing the significance with which Navarro-Frenk-White profiles may be excluded, depending on the degree to which the relevant properties of the different stellar populations are correlated. Finally, we derive a new optimal mass estimator that removes the residual biases and achieves a statistically significant reduction in the scatter to 20 per cent overall for dispersion-dominated galaxies, allowing more precise and accurate mass estimates.
  • Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandelals, E.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L. -Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, E.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, E.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Desert, F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Ensslin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Fomi, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Genova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, E. K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Ilic, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J. -M.; Langer, M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martins, P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthais, E.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschenes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, E.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Schaefer, B. M.; Schiavon, F.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutter, P.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Viel, M.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; Xia, J. -Q.; Yvon, D.; Zacchei, A.; Zonca, A. (2014)
  • Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, H. C.; Chiang, L. -Y; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Desert, F. -X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J. -M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J. -B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Norgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prezeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Tuerler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A. (2014)
  • Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, E.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Basak, S.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J. -F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L. -Y; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Tuovinen, J.; Valiviita, J. (2014)
  • Ade, P. A. R.; Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Tuovinen, J.; Valiviita, J.; Planck Collaboration (2014)
  • Ade, P. A. R.; Juvela, M.; Keihanen, E.; Kurki-Suonio, H.; Poutanen, T.; Suur-Uski, A. -S.; Planck Collaboration (2013)