Browsing by Subject "DIMETHYLAMINE"

Sort by: Order: Results:

Now showing items 1-12 of 12
  • Kupiainen-Määttä, Oona (2016)
    Evaporation rates of small negatively charged sulfuric acid-ammonia clusters are determined by combining detailed cluster formation simulations with cluster distributions measured in the CLOUD experiment at CERN. The analysis is performed by varying the evaporation rates with Markov chain Monte Carlo (MCMC), running cluster formation simulations with each new set of evaporation rates and comparing the obtained cluster distributions to the measurements. In a second set of simulations, the fragmentation of clusters in the mass spectrometer due to energetic collisions is studied by treating also the fragmentation probabilities as unknown parameters and varying them with MCMC. This second set of simulations results in a better fit to the experimental data, suggesting that a large fraction of the observed HSO4- and HSO4-center dot H2SO4 signals may result from fragmentation of larger clusters, most importantly the HSO4-center dot(H2SO4)(2) trimer.
  • Elm, Jonas; Passananti, Monica; Kurten, Theo; Vehkamäki, Hanna (2017)
    Recent experimental evidence suggests that diamines can enhance atmospheric new particle formation more efficiently compared to monoamines such as dimethylamine Here we investigate the molecular interactions between sulfuric acid (sa) and the diamine putrescine (put) using computational methods. The molecular structure of up to four sulfuric acid molecules and up to four putrescine molecules were obtained, at the omega B97X-D/6-31++G(d,p) level of theory. We utilized a domain local pair natural orbital coupled cluster method (DLPNO-CCSD(T)/aug-cc-pVTZ) to obtain highly accurate binding energies of the clusters. We find that the (sa)(1-4)(put)(1-4) clusters show more ionic character than clusters consisting of sulfuric acid and dimethylamine (dma) by readily forming several sulfate ions in the cluster. To estimate the stability of the clusters, we calculate the evaporation rates and compare them to ESI-APi-TOF measurements. Using the atmospheric cluster dynamics code (ACDC), we simulate and compare the new particle formation rates between the (sa)(1-4)(put)(1-4) and (sa),(1-4)(dma)(1-4) cluster systems. We find that putrescine significantly enhances the formation of new particles compared to dimethylamine. Our findings suggest that a large range of amines with different basicity is capable of explaining various regions of the observed new particle formation events. These results indicate that diamines, or related compounds with high basicity, might be important species in forming the initial cluster with sulfuric acid and subsequently more abundant amines with lower basicity can assist in the new particle formation process by attaching to the sulfuric acid-diamine nucleus.
  • Myllys, Nanna; Ponkkonen, Tuomo; Chee, Sabrina; Smith, James (2020)
    The role of an oxidation product of trimethylamine, trimethylamine oxide, in atmospheric particle formation is studied using quantum chemical methods and cluster formation simulations. Molecular-level cluster formation mechanisms are resolved, and theoretical results on particle formation are confirmed with mass spectrometer measurements. Trimethylamine oxide is capable of forming only one hydrogen bond with sulfuric acid, but unlike amines, trimethylamine oxide can form stable clusters via ion-dipole interactions. That is because of its zwitterionic structure, which causes a high dipole moment. Cluster growth occurs close to the acid:base ratio of 1:1, which is the same as for other monoprotic bases. Enhancement potential of trimethylamine oxide in particle formation is much higher than that of dimethylamine, but lower compared to guanidine. Therefore, at relatively low concentrations and high temperatures, guanidine and trimethylamine oxide may dominate particle formation events over amines.
  • Kontkanen, Jenni; Olenius, Tinja; Kulmala, Markku; Riipinen, Ilona (2018)
    Atmospheric new particle formation (NPF) occurs by the formation of nanometer-sized molecular clusters and their subsequent growth to larger particles. NPF involving sulfuric acid, bases and oxidized organic compounds is an important source of atmospheric aerosol particles. One of the mechanisms suggested to depict this process is nano-Kohler theory, which describes the activation of inorganic molecular clusters to growth by a soluble organic vapor. In this work, we studied the capability of nano-Kohler theory to describe the initial growth of atmospheric molecular clusters by simulating the dynamics of a cluster population in the presence of a sulfuric acid-base mixture and an organic compound. We observed nano-Kohler-type activation in our simulations when the saturation ratio of the organic vapor and the ratio between organic and inorganic vapor concentrations were in a suitable range. However, nano-Kohler theory was unable to predict the exact size at which the activation occurred in the simulations. In some conditions, apparent cluster growth rate (GR) started to increase close to the activation size determined from the simulations. Nevertheless, because the behavior of GR is also affected by other dynamic processes, GR alone cannot be used to deduce the cluster growth mechanism.
  • Rasmussen, Freja Rydahl; Kubecka, Jakub; Besel, Vitus; Vehkamäki, Hanna; Mikkelsen, Kurt V.; Bilde, Merete; Elm, Jonas (2020)
    Sampling the shallow free energy surface of hydrated atmospheric molecular clusters is a significant challenge. Using computational methods, we present an efficient approach to obtain minimum free energy structures for large hydrated clusters of atmospheric relevance. We study clusters consisting of two to four sulfuric acid (sa) molecules and hydrate them with up to five water (w) molecules. The structures of the "dry" clusters are obtained using the ABCluster program to yield a large pool of low-lying conformer minima with respect to free energy. The conformers (up to ten) lowest in free energy are then hydrated using our recently developed systematic hydrate sampling technique. Using this approach, we identify a total of 1145 unique (sa)(2-4)(w)(1-5) cluster structures. The cluster geometries and thermochemical parameters are calculated at the omega B97X-D/6-31++G(d,p) level of theory, at 298.15 K and 1 atm. The single-point energy of the most stable clusters is calculated using a high-level DLPNO-CCSD(T-0)/aug-cc-pVTZ method. Using the thermochemical data, we calculate the equilibrium hydrate distribution of the clusters under atmospheric conditions and find that the larger (sa)(3) and (sa)(4) clusters are significantly more hydrated than the smaller (sa)(2) cluster or the sulfuric acid (sa)(1) molecule. These findings indicate that more than five water molecules might be required to fully saturate the sulfuric acid clusters with water under atmospheric conditions. The presented methodology gives modelers a tool to take the effect of water explicitly into account in atmospheric particle formation models based on quantum chemistry.
  • Besel, Vitus; Kubecka, Jakub; Kurten, Theo; Vehkamäki, Hanna (2020)
    We tested the influence of various parameters on the new particle formation rate predicted for the sulfuric acid–ammonia system using quantum chemistry and cluster distribution dynamics simulations, in our case, Atmospheric Cluster Dynamics Code (ACDC). We found that consistent consideration of the rotational symmetry number of monomers (sulfuric acid and ammonia molecules, and bisulfate and ammonium ions) leads to a significant rise in the predicted particle formation rate, whereas inclusion of the rotational symmetry number of the clusters only changes the results slightly, and only in conditions where charged clusters dominate the particle formation rate. This is because most of the clusters stable enough to participate in new particle formation have a rotational symmetry number of 1, and few exceptions to this rule are positively charged clusters. In contrast, the application of the quasi-harmonic correction for low-frequency vibrational modes tends to generally decrease predicted new particle formation rates and also significantly alters the slope of the formation rate curve plotted against the sulfuric acid concentration, which is a typical convention in atmospheric aerosol science. The impact of the maximum size of the clusters explicitly included in the simulations depends on the simulated conditions. The errors arising from a limited set of clusters are higher for higher evaporation rates, and thus tend to increase with temperature. Similarly, the errors tend to be higher for lower vapor concentrations. The boundary conditions for outgrowing clusters (that are counted as formed particles) have only a small influence on the results, provided that the definition is chemically reasonable and that the set of simulated clusters is sufficiently large. A comparison with data from the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber and a cluster distribution dynamics model using older quantum chemistry input data shows improved agreement when using our new input data and the proposed combination of symmetry and quasi-harmonic corrections.
  • Almeida, Joao; Schobesberger, Siegfried; Kuerten, Andreas; Ortega, Ismael K.; Kupiainen, Oona; Praplan, Arnaud P.; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, Andre; Dommen, Josef; Donahue, Neil M.; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurten, Theo; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppa, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J.; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D.; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tome, Antonio; Troestl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S.; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R.; Vehkamäki, Hanna; Kirkby, Jasper (2013)
  • Lehtipalo, Katrianne; Yan, Chao; Dada, Lubna; Bianchi, Federico; Xiao, Mao; Wagner, Robert; Stolzenburg, Dominik; Ahonen, Lauri R.; Amorim, Antonio; Baccarini, Andrea; Bauer, Paulus S.; Baumgartner, Bernhard; Bergen, Anton; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Buchholz, Angela; Mazon, Stephany Buenrostro; Chen, Dexian; Chen, Xuemeng; Dias, Antonio; Dommen, Josef; Draper, Danielle C.; Duplissy, Jonathan; Ehn, Mikael; Finkenzeller, Henning; Fischer, Lukas; Frege, Carla; Fuchs, Claudia; Garmash, Olga; Gordon, Hamish; Hakala, Jani; He, Xucheng; Heikkinen, Liine; Heinritzi, Martin; Helm, Johanna C.; Hofbauer, Victoria; Hoyle, Christopher R.; Jokinen, Tuija; Kangasluoma, Juha; Kerminen, Veli-Matti; Kim, Changhyuk; Kirkby, Jasper; Kontkanen, Jenni; Kuerten, Andreas; Lawler, Michael J.; Mai, Huajun; Mathot, Serge; Mauldin, Roy L.; Molteni, Ugo; Nichman, Leonid; Nie, Wei; Nieminen, Tuomo; Ojdanic, Andrea; Onnela, Antti; Passananti, Monica; Petäjä, Tuukka; Piel, Felix; Pospisilova, Veronika; Quelever, Lauriane L. J.; Rissanen, Matti P.; Rose, Clémence; Sarnela, Nina; Schallhart, Simon; Schuchmann, Simone; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Tauber, Christian; Tome, Antonio; Trostl, Jasmin; Väisänen, Olli; Vogel, Alexander L.; Volkamer, Rainer; Wagner, Andrea C.; Wang, Mingyi; Weitz, Lena; Wimmer, Daniela; Ye, Penglin; Ylisirniö, Arttu; Zha, Qiaozhi; Carslaw, Kenneth S.; Curtius, Joachim; Donahue, Neil M.; Flagan, Richard C.; Hansel, Armin; Riipinen, Ilona; Virtanen, Annele; Winkler, Paul M.; Baltensperger, Urs; Kulmala, Markku; Worsnop, Douglas R. (2018)
    A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NOx) and sulfur oxides (SOx) from fossil fuel combustion, as well as ammonia (NH3) from livestock and fertilizers. Here, we show how NOx suppresses particle formation, while HOMs, sulfuric acid, and NH3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system.
  • Halonen, R.; Zapadinsky, E.; Kurtén, T.; Vehkamäki, H.; Reischl, B. (2019)
    Collisions of molecules and clusters play a key role in determining the rate of atmospheric new particle formation and growth. Traditionally the statistics of these collisions are taken from kinetic gas theory assuming spherical noninteracting particles, which may significantly underestimate the collision coefficients for most atmospherically relevant molecules. Such systematic errors in predicted new particle formation rates will also affect large-scale climate models. We studied the statistics of collisions of sulfuric acid molecules in a vacuum using atomistic molecular dynamics simulations. We found that the effective collision cross section of the H2SO4 molecule, as described by an optimized potentials for liquid simulation (OPLS). OPLS all-atom force field, is significantly larger than the hard-sphere diameter assigned to the molecule based on the liquid density of sulfuric acid. As a consequence, the actual collision coefficient is enhanced by a factor of 2.2 at 300 K compared with kinetic gas theory. This enhancement factor obtained from atomistic simulation is consistent with the discrepancy observed between experimental formation rates of clusters containing sulfuric acid and calculated formation rates using hard-sphere kinetics. We find reasonable agreement with an enhancement factor calculated from the Langevin model of capture, based on the attractive part of the atomistic intermolecular potential of mean force.
  • Myllys, Nanna; Kubecka, Jakub; Besel, Vitus; Alfaouri, Dina; Olenius, Tinja; Smith, James Norman; Passananti, Monica (2019)
    In atmospheric sulfuric-acid-driven particle formation, bases are able to stabilize the initial molecular clusters and thus enhance particle formation. The enhancing potential of a stabilizing base is affected by different factors, such as the basicity and abundance. Here we use weak (ammonia), medium strong (dimethylamine) and very strong (guanidine) bases as representative atmospheric base compounds, and we systematically investigate their ability to stabilize sulfuric acid clusters. Using quantum chemistry, we study proton transfer as well as intermolecular interactions and symmetry in clusters, of which the former is directly related to the base strength and the latter to the structural effects. Based on the theoretical cluster stabilities and cluster population kinetics modeling, we provide molecular-level mechanisms of cluster growth and show that in electrically neutral particle formation, guanidine can dominate formation events even at relatively low concentrations. However, when ions are involved, charge effects can also stabilize small clusters for weaker bases. In this case the atmospheric abundance of the bases becomes more important, and thus ammonia is likely to play a key role. The theoretical findings are validated by cluster distribution experiments, as well as comparisons to previously reported particle formation rates, showing a good agreement.
  • Brus, David; Skrabalova, Lenka; Herrmann, Erik; Olenius, Tinja; Travnickova, Tereza; Makkonen, Ulla; Merikanto, Joonas (2017)
    We report flow tube measurements of the effective sulfuric acid diffusion coefficient at ranges of different relative humidities (from similar to 4 to 70%), temperatures (278, 288 and 298 K) and initial H2SO4 concentrations (from 1 x 10(6) to 1 x 10(8) molecules.cm(-3)). The measurements were carried out under laminar flow of humidified air containing trace amounts of impurities such as amines (few ppt), thus representing typical conditions met in Earth's continental boundary layer. The diffusion coefficients were calculated from the sulfuric acid wall loss rate coefficients that were obtained by measuring H2SO4 concentration continuously at seven different positions along the flow tube with a chemical ionization mass spectrometer (CIMS). The wall loss rate coefficients and laminar flow conditions were verified with additional computational fluid dynamics (CFD) model FLUENT simulations. The determined effective sulfuric acid diffusion coefficients decreased with increasing relative humidity, as also seen in previous experiments, and had a rather strong power dependence with respect to temperature, around proportional to T-5.6, which is in disagreement with the expected temperature dependence of similar to T-1.75 for pure vapours. Further clustering kinetics simulations using quantum chemical data showed that the effective diffusion coefficient is lowered by the increased diffusion volume of H2SO4 molecules via a temperature-dependent attachment of base impurities like amines. Thus, the measurements and simulations suggest that in the atmosphere the attachment of sulfuric acid molecules with base molecules can lead to a lower than expected effective sulfuric acid diffusion coefficient with a higher than expected temperature dependence.
  • Yan, Chao; Yin, Rujing; Lu, Yiqun; Dada, Lubna; Yang, Dongsen; Fu, Yueyun; Kontkanen, Jenni; Deng, Chenjuan; Garmash, Olga; Ruan, Jiaxin; Baalbaki, Rima; Schervish, Meredith; Cai, Runlong; Bloss, Matthew; Chan, Tommy; Chen, Tianzeng; Chen, Qi; Chen, Xuemeng; Chen, Yan; Chu, Biwu; Dällenbach, Kaspar; Foreback, Benjamin; He, Xucheng; Heikkinen, Liine; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kokkonen, Tom; Kurppa, Mona; Lehtipalo, Katrianne; Li, Haiyan; Li, Hui; Li, Xiaoxiao; Liu, Yiliang; Ma, Qingxin; Paasonen, Pauli; Rantala, Pekka; Pileci, Rosaria E.; Rusanen, Anton; Sarnela, Nina; Simonen, Pauli; Wang, Shixian; Wang, Weigang; Wang, Yonghong; Xue, Mo; Yang, Gan; Yao, Lei; Zhou, Ying; Kujansuu, Joni; Petäjä, Tuukka; Nie, Wei; Ma, Yan; Ge, Maofa; He, Hong; Donahue, Neil M.; Worsnop, Douglas R.; Kerminen, Veli-Matti; Wang, Lin; Liu, Yongchun; Zheng, Jun; Kulmala, Markku; Jiang, Jingkun; Bianchi, Federico (2021)
    Intense and frequent new particle formation (NPF) events have been observed in polluted urban environments, yet the dominant mechanisms are still under debate. To understand the key species and governing processes of NPF in polluted urban environments, we conducted comprehensive measurements in downtown Beijing during January-March, 2018. We performed detailed analyses on sulfuric acid cluster composition and budget, as well as the chemical and physical properties of oxidized organic molecules (OOMs). Our results demonstrate that the fast clustering of sulfuric acid (H2SO4) and base molecules triggered the NPF events, and OOMs further helped grow the newly formed particles toward climate- and health-relevant sizes. This synergistic role of H2SO4, base species, and OOMs in NPF is likely representative of polluted urban environments where abundant H2SO4 and base species usually co-exist, and OOMs are with moderately low volatility when produced under high NOx concentrations.