Browsing by Subject "DISTANCE"

Sort by: Order: Results:

Now showing items 1-20 of 23
  • Dinu, Liviu P.; Ionescu, Radu Tudor; Tomescu, Alexandru I. (2014)
  • TOP-SCOPE Collaboration (2022)
    The Planck Catalogue of Galactic Cold Clumps provides an all-sky sample of potential star-forming regions based on the submillimeter emission of their dust content. Around 1000 of these Planck objects were mapped with the James Clerk Maxwell telescope in the submillimeter range during the SCOPE survey, identifying prestellar and protostellar dense clumps inside them. We used the Effelsberg 100 m telescope to observe the emission lines of the NH3 inversion transitions toward a sample of 97 dense objects in varying environments in order to assess the physical parameters of their gas content. We derive their temperature, density, and velocity dispersion, correlating the resulting parameters with the environmental and evolutionary characteristics of the targets and with regard to their distance and physical size. We examine the dependence of physical parameters on distance and Galactic position and compare the gas-based and dust-continuum-based temperatures and densities. Together with the presence of maser emission and higher inversion transitions of ammonia, we may differentiate between certain groups of targets, e.g., filamentary, protostellar clumps, and high-latitude, core-sized, starless sources.
  • Atashi, Nahid; Tuure, Juuso; Alakukku, Laura; Rahimi, Dariush; Pellikka, Petri; Zaidan, Martha Arbayani; Vuollekoski, Henri; Rasanen, Matti; Kulmala, Markku; Vesala, Timo; Hussein, Tareq (2021)
    Model evaluation against experimental data is an important step towards accurate model predictions and simulations. Here, we evaluated an energy-balance model to predict dew formation occurrence and estimate its amount for East-African arid-climate conditions against 13 months of experimental dew harvesting data in Maktau, Kenya. The model was capable of predicting the dew formation occurrence effectively. However, it overestimated the harvestable dew amount by about a ratio of 1.7. As such, a factor of 0.6 was applied for a long-term period (1979-2018) to investigate the spatial and temporal variation of the dew formation in Kenya. The annual average of dew occurrence in Kenya was similar to 130 days with dew yield > 0.1 L/m(2)/day. The dew formation showed a seasonal cycle with the maximum yield in winter and minimum in summer. Three major dew formation zones were identified after cluster analysis: arid and semi-arid regions; mountain regions; and coastal regions. The average daily and yearly maximum dew yield were 0.05 and 18; 0.9 and 25; and 0.15 and 40 L/m(2)/day; respectively. A precise prediction of dew occurrence and dew yield is very challenging due to inherent limitations in numerical models and meteorological input parameters.
  • Gabrysch, Sabine; Nesbitt, Robin C.; Schoeps, Anja; Hurt, Lisa; Soremekun, Seyi; Edmond, Karen; Manu, Alexander; Lohela, Terhi J.; Danso, Samuel; Tomlin, Keith; Kirkwood, Betty; Campbell, Oona M. R. (2019)
    Background Maternal and perinatal mortality are still unacceptably high in many countries despite steep increases in facility birth. The evidence that childbirth in facilities reduces mortality is weak, mainly because of the scarcity of robust study designs and data. We aimed to assess this link by quantifying the influence of major determinants of facility birth (cluster-level facility birth, wealth, education, and distance to childbirth care) on several mortality outcomes, while also considering quality of care. Methods Our study is a secondary analysis of surveillance data on 119 244 pregnancies from two large population-based cluster-randomised controlled trials in Brong Ahafo, Ghana. In addition, we specifically collected data to assess quality of care at all 64 childbirth facilities in the study area. Outcomes were direct maternal mortality, perinatal mortality, first-day and early neonatal mortality, and antepartum and intrapartum stillbirth. We calculated cluster-level facility birth as the percentage of facility births in a woman's village over the preceding 2 years, and we computed distances from women's regular residence to health facilities in a geospatial database. Associations between determinants of facility birth and mortality outcomes were assessed in crude and multivariable multilevel logistic regression models. We stratified perinatal mortality effects by three policy periods, using April 1, 2005, and July 1, 2008, as cutoff points, when delivery-fee exemption and free health insurance were introduced in Ghana. These policies increased facility birth and potentially reduced quality of care. Findings Higher proportions of facility births in a cluster were not linked to reductions in any of the mortality outcomes. In women who were wealthier, facility births were much more common than in those who were poorer, but mortality was not lower among them or their babies. Women with higher education had lower mortality risks than less-educated women, except first-day and early neonatal mortality. A substantially higher proportion of women living in areas closer to childbirth facilities had facility births and caesarean sections than women living further from childbirth facilities, but mortality risks were not lower despite this increased service use. Among women who lived in areas closer to facilities offering comprehensive emergency obstetric care (CEmOC), emergency newborn care, or high-quality routine care, or to facilities that had providers with satisfactory competence, we found a lower risk of intrapartum stillbirth (14.2 per 1000 deliveries at >20 km from a CEmOC facility vs 10.4 per 1000 deliveries at Interpretation Facility birth does not necessarily convey a survival benefit for women or babies and should only be recommended in facilities capable of providing emergency obstetric and newborn care and capable of safeguarding uncomplicated births. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd.
  • Weigang, Helene C.; Kisdi, Eva (2015)
    Resources invested in dispersal structures as well as time and energy spent during transfer may often decrease fecundity. Here we analyse an extended version of the Hamilton-May model of dispersal evolution, where we include a fecundity-dispersal trade-off and also mortality between competition and reproduction. With adaptive dynamics and critical function analysis we investigate the evolution of dispersal strategies and ask whether adaptive diversification is possible. We exclude evolutionary branching for concave trade-offs and show that for convex trade-offs diversification is promoted in a narrow parameter range. We provide theoretical evidence that dispersal strategies can monotonically decrease with increasing survival during dispersal. Moreover, we illustrate the existence of two alternative attracting dispersal strategies. The model exhibits fold bifurcation points where slight changes in survival can lead to evolutionary catastrophes. (C) 2015 Elsevier Ltd. All rights reserved.
  • Karisto, Petteri; Kisdi, Eva (2017)
    The pattern of connectivity between local populations or between microsites supporting individuals within a population is a poorly understood factor affecting the evolution of dispersal. We modify the well-known Hamilton May model of dispersal evolution to allow for variable connectivity between microsites. For simplicity, we assume that the microsites are either solitary, i.e., weakly connected through costly dispersal, or part of a well-connected cluster of sites with low-cost dispersal within the cluster. We use adaptive dynamics to investigate the evolution of dispersal, obtaining analytic results for monomorphic evolution and numerical results for the co-evolution of two dispersal strategies. A monomorphic population always evolves to a unique singular dispersal strategy, which may be an evolutionarily stable strategy or an evolutionary branching point. Evolutionary branching happens if the contrast between connectivities is sufficiently high and the solitary microsites are common. The dimorphic evolutionary singularity, when it exists, is always evolutionarily and convergence stable. The model exhibits both protected and unprotected dimorphisms of dispersal strategies, but the dimorphic singularity is always protected. Contrasting connectivities can thus maintain dispersal polymorphisms in temporally stable environments.
  • Hakala, Sanja Maria; Seppä, Perttu; Heikkilä, Maria; Punttila, Pekka; Sorvari, Jouni; Helanterä, Heikki (2018)
    Coptoformica Muller, 1923 is a subgenus of Formica Linnaeus, 1758 that consists of c. a dozen species of ants that typically inhabit open grassy habitats and build small nest mounds. The most recent addition to the group is Formica fennica Seifert, 2000. The description was based on morphological characters, but the species status has not been confirmed by molecular methods. In this study, we use thirteen DNA microsatellite markers and a partial mitochondrial COI gene sequence to assess the species status of F. fennica, by comparing the genetic variation among samples identified as F. fennica and six other boreal Formica (Coptoformica) species. Most of the species studied form separate, discontinuous clusters in phylogenetic and spatial analyses with only little intraspecific genetic variation. However, both nuclear and mitochondrial markers fail to separate the species pair F. exsecta Nylander, 1846 and F. fennica despite established morphological differences. The genetic variation within the F. exsecta/fennica group is extensive, but reflects spatial rather than morphological differences. Finnish F. fennica populations studied so far should not be considered a separate species, but merely a morph of F. exsecta.
  • Low, Yee Wen; Rajaraman, Sitaram; Tomlin, Crystal M.; Ahmad, Joffre Ali; Ardi, Wisnu H.; Armstrong, Kate; Athen, Parusuraman; Berhaman, Ahmad; Bone, Ruth E.; Cheek, Martin; Cho, Nicholas R. W.; Choo, Le Min; Cowie, Ian D.; Crayn, Darren; Fleck, Steven J.; Ford, Andrew J.; Forster, Paul; Girmansyah, Deden; Goyder, David J.; Gray, Bruce; Heatubun, Charlie D.; Ibrahim, Ali; Ibrahim, Bazilah; Jayasinghe, Himesh D.; Kalat, Muhammad Ariffin; Kathriarachchi, Hashendra S.; Kintamani, Endang; Koh, Sin Lan; Lai, Joseph T. K.; Lee, Serena M. L.; Leong, Paul K. F.; Lim, Wei Hao; Lum, Shawn K. Y.; Mahyuni, Ridha; McDonald, William J. F.; Metali, Faizah; Mustaqim, Wendy A.; Naiki, Akiyo; Ngo, Kang Min; Niissalo, Matti; Ranasinghe, Subhani; Repin, Rimi; Rustiami, Himmah; Simbiak, Victor; Sukri, Rahayu S.; Sunarti, Siti; Trethowan, Liam A.; Trias-Blasi, Anna; Vasconcelos, Thais N. C.; Wanma, Jimmy F.; Widodo, Pudji; Wijesundara, Douglas Siril A.; Worboys, Stuart; Yap, Jing Wei; Yong, Kien Thai; Khew, Gillian S. W.; Salojarvi, Jarkko; Michael, Todd P.; Middleton, David J.; Burslem, David F. R. P.; Lindqvist, Charlotte; Lucas, Eve J.; Albert, Victor A. (2022)
    The relative importance of the mechanisms underlying species radiation remains unclear. Here, the authors combine reference genome assembly and population genetics analyses to show that neutral forces have contributed to the radiation of the most species-rich tree genus Syzygium. Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.
  • Lynch, Robert; Lummaa, Virpi; Panchanathan, Karthik; Middleton, Kevin; Rotkirch, Anna; Danielsbacka, Mirkka; O'Brien, David; Loehr, John (2019)
    Understanding how refugees integrate into host societies has broad implications for researchers interested in intergroup conflict and for governments concerned with promoting social cohesion. Using detailed records tracking the movements and life histories of Finnish evacuees during World War II, we find that evacuees who intermarry are more likely to be educated, work in professional occupations, marry someone higher in social status and remain in the host community. Evacuees who intermarry before the war have fewer children, whereas those who marry into their host community after the war have more children. These results indicate that life-history and assimilation outcomes depend on key differences between pre-war environments—when migrants are living in their own communities—and post-war environments—when migrants are living in the host community. Overall, this suggests that integration involves a trade-off between reproduction and status such that evacuees who integrate gain social status, whereas those who maintain stronger bonds with their natal communities have higher fertility. We discuss these results within the framework of social capital, intergroup conflict and life-history theory and suggest how they can inform our understanding of evolutionary adaptations that affect tribalism.
  • Ovaskainen, Otso; Ramos, Danielle Leal; Slade, Eleanor M.; Merckx, Thomas; Tikhonov, Gleb; Pennanen, Juho; Pizo, Marco Aurelio; Ribeiro, Milton Cezar; Manuel Morales, Juan (2019)
    Joint species distribution modeling has enabled researchers to move from species-level to community-level analyses, leading to statistically more efficient and ecologically more informative use of data. Here, we propose joint species movement modeling (JSMM) as an analogous approach that enables inferring both species- and community-level movement parameters from multispecies movement data. The species-level movement parameters are modeled as a function of species traits and phylogenetic relationships, allowing one to ask how species traits influence movements, and whether phylogenetically related species are similar in their movement behavior. We illustrate the modeling framework with two contrasting case studies: a stochastic redistribution model for direct observations of bird movements and a spatially structured diffusion model for capture-recapture data on moth movements. In both cases, the JSMM identified several traits that explain differences in movement behavior among species, such as movement rate increasing with body size in both birds and moths. We show with simulations that the JSMM approach increases precision of species-specific parameter estimates by borrowing information from other species that are closely related or have similar traits. The JSMM framework is applicable for many kinds of data, and it facilitates a mechanistic understanding of the causes and consequences of interspecific variation in movement behavior.
  • Tachikawa, Masashi; Morone, Nobuhiro; Senju, Yosuke; Sugiura, Tadao; Hanawa-Suetsugu, Kyoko; Mochizuki, Atsushi; Suetsugu, Shiro (2017)
    Caveolae are abundant flask-shaped invaginations of plasma membranes that buffer membrane tension through their deformation. Few quantitative studies on the deformation of caveolae have been reported. Each caveola contains approximately 150 caveolin-1 proteins. In this study, we estimated the extent of caveolar deformation by measuring the density of caveolin-1 projected onto a two-dimensional (2D) plane. The caveolin-1 in a flattened caveola is assumed to have approximately one-quarter of the density of the caveolin-1 in a flask-shaped caveola. The proportion of one-quarter-density caveolin-1 increased after increasing the tension of the plasma membrane through hypo-osmotic treatment. The one-quarter-density caveolin-1 was soluble in detergent and formed a continuous population with the caveolin-1 in the caveolae of cells under isotonic culture. The distinct, dispersed lower-density caveolin-1 was soluble in detergent and increased after the application of tension, suggesting that the hypo-osmotic tension induced the dispersion of caveolin-1 from the caveolae, possibly through flattened caveolar intermediates.
  • Collett, Thomas; Montanari, Francesco; Räsänen, Syksy (2019)
    We present the first determination of the Hubble constant H-0 from strong lensing time delay data and type Ia supernova luminosity distances that is independent of the cosmological model. We also determine the spatial curvature model independently. We assume that light propagation over long distances is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric and geometrical optics holds, but make no assumption about the contents of the Universe or the theory of gravity on cosmological scales. We find H-0 = 75.7(-4.4)(+4.5) km/s/Mpc and Omega(K0) = 0.12(-0.25)(+0.27). This is a 6% determination of H-0. A weak prior from the cosmic microwave background on the distance to the last scattering surface improves this to H-0 = 76.8(-3.8)(+4.2) km/s/Mpc and Omega(K0) = 0.18(-0.18)(+0.25). Assuming a zero spatial curvature, we get H-0 = 74.2(-2.9)(+3.0) km/s/Mpc, a precision of 4%. The measurements also provide a consistency test of the FLRW metric: we find no evidence against it.
  • Lehikoinen, Aleksi; Linden, Andreas; Karlsson, Mans; Andersson, Arne; Crewe, Tara L.; Dunn, Erica H.; Gregory, George; Karlsson, Lennart; Kristiansen, Vidar; Mackenzie, Stuart; Newman, Steve; Roer, Jan Erik; Sharpe, Chris; Sokolov, Leonid V.; Steinholtz, Asa; Stervander, Martin; Tirri, Ina-Sabrina; Tjornlov, Rune Skjold (2019)
    Climate change has been shown to shift the seasonal timing (i.e. phenology) and distribution of species. The phenological effects of climate change on living organisms have often been tested using first occurrence dates, which may be uninformative and biased. More rarely investigated is how different phases of a phenological sequence (e.g. beginning, central tendency and end) or its duration have changed over time. This type of analysis requires continuous observation throughout the phenological event over multiple years, and such data sets are rare. In this study we examined the impact of temperature on long-term change of passage timing and duration of the spring migration period in birds, and which species' traits explain species-specific variation. Data used covered 195 species from 21 European and Canadian bird observatories from which systematic daily sampling protocols were available. Migration dates were negatively associated with early spring temperature and timings had in general advanced in 57 years. Short-distance migrants advanced the beginning of their migration more than long-distance migrants when corrected for phylogenic relatedness, but such a difference was not found in other phases of migration. The advancement of migration has generally been greater for the beginning and median phases of migration relative to the end, leading to extended spring migration seasons. Duration of the migration season increased with increasing temperature. Phenological changes have also been less noticeable in Canada even when corrected for rate of change in temperature. To visualize long-term changes in phenology, we constructed the first multi-species spring migration phenology indicator to describe general changes in median migration dates in the northern hemisphere. The indicator showed an average advancement of one week during five decades across the continents (period 1959-2015). The indicator is easy to update with new data and we therefore encourage future research to investigate whether the trend towards longer periods of occurrence or emergence in spring is also evident in other migratory populations. Such phenological changes may influence detectability in monitoring schemes, and may have broader implications on population and community dynamics.
  • Löytynoja, Ari (Humana press, 2021)
    Methods in Molecular Biology
    Evolutionary analyses require sequence alignments that correctly represent evolutionary homology. Evolutionary homology and proteins' structural similarity are not the same and sequence alignments generated with methods designed for structural matching can be seriously misleading in comparative and phylogenetic analyses. The phylogeny-aware alignment algorithm implemented in the program PRANK has been shown to produce good alignments for evolutionary inferences. Unlike other alignment programs, PRANK makes use of phylogenetic information to distinguish alignment gaps caused by insertions or deletions and, thereafter, handles the two types of events differently. As a by-product of the correct handling of insertions and deletions, PRANK can provide the inferred ancestral sequences as a part of the output and mark the alignment gaps differently depending on their origin in insertion or deletion events. As the algorithm infers the evolutionary history of the sequences, PRANK can be sensitive to errors in the guide phylogeny and violations on the underlying assumptions about the origin and patterns of gaps. To mitigate the effects of such model violations, the phylogeny-aware alignment algorithm has been re-implemented in program PAGAN. By using sequence graphs, PAGAN can model and accumulate evidence from more complex gap structures than PRANK does, and incorporate this uncertainty in the inferred ancestral sequences. These issues are discussed in detail below and practical advice is provided for the use of PRANK and PAGAN in evolutionary analysis. The two software packages can be downloaded from
  • JCMT Large Program SCOPE Collabora; TRAO Key Sci Program TOP Collabora; Yi, Hee-Weon; Lee, Jeong-Eun; Liu, Tie; Kim, Kee-Tae; Choi, Minho; Eden, David; Evans, Neal J.; Di Francesco, James; Fuller, Gary; Hirano, N.; Juvela, Mika; Kang, Sung-ju; Kim, Gwanjeong; Koch, Patrick M.; Lee, Chang Won; Li, Di; Liu, H-Y B.; Liu, Hong-Li; Liu, Sheng-Yuan; Rawlings, Mark G.; Ristorcelli, I.; Sanhueza, Patrico; Soam, Archana; Tatematsu, Ken'ichi; Thompson, Mark; Toth, L.; Wang, Ke; White, Glenn J.; Wu, Yuefang; Yang, Yao-Lun (2018)
    Based on the 850 mu m dust continuum data from SCUBA-2 at James Clerk Maxwell Telescope (JCMT), we compare overall properties of Planck Galactic Cold Clumps (PGCCs) in the lambda Orionis cloud to those of PGCCs in the Orion A and B clouds. The Orion A and B clouds are well-known active star-forming regions, while the A Orionis cloud has a different environment as a consequence of the interaction with a prominent OB association and a giant H-II region. PGCCs in the lambda Orionis cloud have higher dust temperatures (T-d = 16.13 +/- 0.15 K) and lower values of dust emissivity spectral index (beta = 1.65 +/- 0.02) than PGCCs in the Orion A (T-d = 13.79 +/- 0.21 K, beta = 2.07 +/- 0.03) and Orion B (T-d = 13.82 +/- 0.19 K, beta =1.96 +/- 0.02) clouds. We find 119 substructures within the 40 detected PGCCs and identify them as cores. Out of a total of 119 cores, 15 cores are discovered in the lambda Orionis cloud, while 74 and 30 cores are found in the Orion A and B clouds, respectively. The cores in the lambda Orionis cloud show much lower mean values of size R = 0.08 pc, column density N(H-2) (9.5 +/- 1.2) x 10(22)cm(-2) , number density n(H-2) - (2.9 +/- 0.4) x 10 5 CM -3 , and mass M-core = 1.0 +/- 0.3 M(circle dot)compared to the cores in the Orion A [R = 0.11 pc, N(H-2) = (2.3 +/- 0.3) x 10(23) cm(-2), n(H-2) = (3.8 +/- 0.5) x 10(5)cm(-3) , and M-core = 2.4 +/- 0.3 M-circle dot] and Orion B [R = 0.16 pc, N(H-2) (3.8 +/- 0.4) x 10(23) cm(-2), n(H-2) = (15.6 +/- 1.8) x 10(5) cm(-3) , and M-core = 2.7 +/- 0.3 M-circle dot] clouds. These core properties in the A Orionis cloud can be attributed to the photodissociation and external heating by the nearby H rr region, which may prevent the PGCCs from forming gravitationally bound structures and eventually disperse them. These results support the idea of negative stellar feedback on core formation.
  • Rocha, A. V.; Cabanne, G. S.; Aleixo, A.; Silveira, L. F.; Tubaro, P.; Caparroz, R. (2020)
    Based on phylogeographic and niche model analyses of the narrow-billed woodcreeperLepidocolaptes angustirostris, we evaluated the predictions of two diversification hypotheses related to the dry diagonal of South America: (I) isolation by distance (IBD) and (II) landscape heterogeneity. We also investigated the influence of the Pleistocene climatic oscillations on the diversification and population dynamic of this species, and discussed the implications of our findings for the taxonomy of this woodcreeper. We sampled 63 individuals including all subspecies described forL. angustirostris, and compared them using a mitochondrial (ND2) and a nuclear (FIB5) fragments. We performed a Mantel test and spatial autocorrelation analysis, reconstructed the phylogenetic relationships among haplotypes, investigated changes in population size and estimated divergence time among the genetic lineages. We refuted the hypothesis that bird species associated with open environments have shallow geographic differentiation and showed that strong genetic structure observed inL. angustirostriscan not be explained by IBD. Paleo-modeling showed strong association between climatic stable areas and the genetic lineages, suggesting that Pleistocene climatic oscillations have primarily driven the intraspecific diversification of this species. In addition, the association between genetic lineages and the dry diagonal biomes supports that landscape heterogeneity may be acting as a secondary barrier restricting gene flow among the lineages. The genetic lineages found inL. angustirostrisdo not correspond to the subspecies described, indicating that this species can be considered as a single species with strong genetic structure. In conclusion, our data corroborate other studies indicating that Pleistocene climatic oscillations may have had a strong influence in the intraspecific divergence of dry diagonal fauna and that biomes of the dry diagonal should be considered as independent units in further biogeographic studies.
  • Rinne, Teemu; Ala-Salomaki, Heidi; Stecker, G. Christopher; Pätynen, Jukka; Lokki, Tapio (2014)
  • Valkonen, Janne K.; Vakkila, Annu; Pesari, Susanna; Tuominen, Laura; Mappes, Johanna (2020)
    Antipredator adaptations in the form of animal coloration are common and often multifunctional. European vipers (genus Vipera) have a characteristic dorsal zigzag pattern, which has been shown to serve as a warning signal to potential predators. At the same time, it has been suggested to decrease detection risk, and to cause a motion dazzle or flicker-fusion effect during movement. We tested these hypotheses by asking whether (1) the zigzag pattern decreases detection risk and (2) the detection is dependent on the base coloration (grey or brown) or the snake's posture (coiled, basking form or S-shaped, active form). Additionally, (3) we measured the fleeing speed of adders, Vipera berus, and calculated the flicker rate of the zigzag pattern, to see whether it is fast enough to cause a flicker-fusion effect against predators. Our results show that the zigzag pattern reduced detectability regardless of base coloration or posture of the snake. The brown zigzag morph was detected less often than the grey zigzag morph. The fleeing speed of adders appeared to be fast enough to induce a flicker-fusion effect for mammalian predators. However, it is unlikely to be fast enough to induce the flicker-fusion effect for raptors. Our findings highlight that the colour pattern of animals can be multifunctional. The same colour pattern that can decrease detection by predators can also serve as a warning function once detected, and potentially hinder capture during an attack. (c) 2020 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
  • Wisker, Gina; McGinn, Michelle K.; Bengtsen, Søren S.E.; Lokhtina, Irina; He, Faye; Corner, Solveig; Leshem, Shosh; Inouye, Kelsey; Löfström, Erika (2021)
    The global pandemic has forced academics to engage in remote doctoral supervision, and the need to understand this activity is greater than ever before. This contribution involved a cross-field review on remote supervision pertinent in the context of a global pandemic. We have utilised the results of an earlier study bringing a supervision model into a pandemic-perspective integrating studies published about and during the pandemic. We identified themes central to remote supervision along five theory-informed dimensions, namely intellectual/cognitive, instrumental, professional/technical, personal/emotional and ontological dimensions, and elaborate these in the light of the new reality of remote supervision.
  • Fraixedas, Sara; Linden, Andreas; Meller, Kalle; Lindström, Åke; Keiss, Oskars; Kålås, John Atle; Husby, Magne; Leivits, Agu; Leivits, Meelis; Lehikoinen, Aleksi (2017)
    Northern European peatlands are important habitats for biological conservation because they support rich biodiversity and unique species compositions. However, historical management of peatland habitats has had negative consequences for biodiversity and their degradation remains a major conservation concern. Despite increasing awareness of the conservation value of peatlands, the statuses and ecological requirements of peat land species have remained largely understudied. Here, we first analysed temporal trends of Northern European peatland birds to document the status of their populations using bird data from five different countries. Second, we used Finnish monitoring data to assess habitat preferences of peatland bird species, hence helping to target conservation to the most relevant habitat types. There was a general decline of 40% in Northern European peatland bird population sizes in 1981-2014 (speed of decline 1.5%/year) largely driven by Finland, where populations declined almost 50% (2.0% annual decline). In Sweden and Norway, peatland bird populations declined by 20% during 1997-2014 (1.0% annual decline). In contrast, southern populations in Estonia and Latvia, where the majority of open peatlands are protected, showed a 40% increase during 1981-2014 (1.0% annual increase). The most important habitat characteristics preferred by common peatland species in Finland were openness and low tree height, while wetness proved to be an important feature for waders. Drainage of peatlands had clear negative effects on the densities of many species, with the only exception of rustic bunting, which specializes on edge habitats. Our findings call for more effective conservation actions in Northern European peatland habitats, especially in Finland where peatland drainage represents a major threat to biodiversity.