Browsing by Subject "DMSO"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Stape, Thiago Henrique Scarabello; Seseogullari-Dirihan, Roda; Tjäderhane, Leo; Abunas, Gabriel; Marcondes Martins, Luis Roberto; Tezvergil-Mutluay, Arzu (2018)
    In dentistry, the wet-bonding approach relies on water to maintain demineralized collagen expanded for proper resin infiltration; nevertheless, hydrolytic instability of the resin-dentin interface is inevitable with current bonding techniques. Considering dimethyl sulfoxide's (DMSO) ability to "biomodify" collagen and precipitate enzymes, the aim was to test whether the use of DMSO would permit adequate resin bonding to H3PO4-etched dehydrated dentin and assess its impact on collagen degradation by host-derived enzymes. Etched dentin surfaces from extracted sound human molars were randomly bonded in wet or dry conditions using aqueous or ethanolic DMSO solutions as pretreatments and bonding resins with or without DMSO. Bonded teeth were sectioned into resin-dentin slabs for confocal in situ zymography and beams for microtensile bond strength test. Demineralized powdered dentin was incubated in the tested DMSO -media and a hydroxyproline assay evaluated dissolution of collagen peptides. Zymography was performed on protein extracts obtained from dry and wet H3PO4-ecthed dentin powder treated with the DMSO- media. The correlative biochemical analysis demonstrated that reduction of water content during dentin hybridization by the innovative dry-bonding approaches with DMSO is effective to inactivate host-derived MMP-2 and MMP-9 and thus reduce collagen degradation while simultaneously optimizing resin-dentin bonding.
  • Scarabello Stape, Thiago Henrique; Tjaderhane, Leo; Tezvergil-Mutluay, Arzu; Fujiwara Yanikian, Cristiane Rumi; Szesz, Anna Luiza; Loguercio, Alessandro Dourado; Marcondes Martins, Luis Roberto (2016)
    Objective. This study evaluated a new approach, named dimethyl sulfoxide (DMSO)-wet bonding, to produce more desirable long-term prospects for the ultrafine interactions between synthetic polymeric biomaterials and the inherently hydrated dentin substrate. Methods. Sound third molars were randomly restored with/without DMSO pretreatment using a total-etch (Scocthbond Multipurpose: SBMP) and a self-etch (Clearfil SE Bond: CF) adhesive systems. Restored teeth (n = 10)/group were sectioned into sticks and submitted to different analyses: micro-Raman determined the degree of conversion inside the hybrid layer (DC); resin dentin microtensile bond strength and fracture pattern analysis at 24 h, 1 year and 2 years of aging; and nanoleakage evaluation at 24h and 2 years. Results. DMSO-wet bonding produced significantly higher 24 h bond strengths for SBMP that were sustained over the two-year period, with significantly less adhesive failures. Similarly, DMSO-treated CF samples presented significantly higher bond strength than untreated samples at two years. Both adhesives had significant less adhesive failures at 2 years with DMSO. DMSO had no effect on DC of SBMP, but significantly increased the DC of CE DMSO-treated SBMP samples presented reduced silver uptake compared to untreated samples after aging. Significance. Biomodification of the dentin substrate by the proposed strategy using DMSO is a suitable approach to produce more durable hybrid layers with superior ability to withstand hydrolytic degradation over time. Although the active role of DMSO on dentin bond improvement may vary according to monomer composition, its use seems to be effective on both self-etch and etch-and-rinse bonding mechanisms. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
  • Mehtala, P.; Pashley, D. H.; Tjaderhane, L. (2017)
    Objectives. Infiltration of adhesive on dentin matrix depends on interaction of surface and adhesive. Interaction depends on dentin wettability, which can be enhanced either by increasing dentin surface energy or lowering the surface energy of adhesive. The objective was to examine the effect of dimethyl sulfoxide (DMSO) on demineralized dentin wettability and dentin organic matrix expansion. Methods. Acid-etched human dentin was used for sessile drop contact angle measurement to test surface wetting on 1-5% DMSO-treated demineralized dentin surface, and linear variable differential transformer (LVDT) to measure expansion/shrinkage of dentinal matrix. DMSO-water binary liquids were examined for surface tension changes through concentrations from 0 to 100% DMSO. Kruskal-Wallis and Mann-Whitney tests were used to test the differences in dentin wettability, expansion and shrinkage, and Spearman test to test the correlation between DMSO concentration and water surface tension. The level of significance was p <0.05. Results. Pretreatment with 1-5% DMSO caused statistically significant concentration dependent increase in wetting: the immediate contact angles decreased by 11.8% and 46.6% and 60 s contact angles by 9.5% and 47.4% with 1% and 5% DMSO, respectively. DMSOwater mixtures concentration-dependently expanded demineralized dentin samples less than pure water, except with high (>80%) DMSO concentrations which expanded demineralized dentin more than water. Drying times of LVDT samples increased significantly with the use of DMSO. Significance. Increased dentin wettability may explain the previously demonstrated increase in adhesive penetration with DMSO-treated dentin, and together with the expansion of collagen matrix after drying may also explain previously observed increase in dentin adhesive bonding. (C) 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
  • Sinervä, Anu-Maria (University of Helsinki, 1997)
  • Stape, Thiago Henrique Scarabello; Tjäderhane, Leo; Abuna, Gabriel; Sinhoreti, Mário Alexandre Coelho; Martins, Luís Roberto Marcondes; Tezvergil-Mutluay, Arzu (2018)
    Objective. To determine whether bonding effectiveness and hybrid layer integrity on acid-etched dehydrated dentin would be comparable to the conventional wet-bonding technique through new dentin biomodification approaches using dimethyl sulfoxide (DMSO). Methods. Etched dentin surfaces from extracted sound molars were randomly bonded in wet or dry conditions (30 s air drying) with DMSO/ethanol or DMSO/H2O as pretreatments using a simplified (Scotchbond Universal Adhesive, 3M ESPE: SU) and a multi-step (Adper Scotchbond Multi-Purpose, 3M ESPE: SBMP) etch-and-rinse adhesives. Untreated dentin surfaces served as control. Bonded teeth (n=8) were stored in distilled water for 24 h and sectioned into resin-dentin beams (0.8 mm(2)) for microtensile bond strength test and quantitative interfacial nanoleakage analysis (n = 8) under SEM. Additional teeth (n = 2) were prepared for micropermeability assessment by CFLSM under simulated pulp ar pressure (20 cm H2O) using 5 mM fluorescein as a tracer. Microtensile data was analyzed by 3-way ANOVA followed by Tukey Test and nanoleakage by Kruskal-Wallis and Dunn-Bonferroni multiple comparison test (alpha = 0.05). Results. While dry-bonding of SBMP produced significantly lower bond strengths than wet-bonding (p Conclusion. DMSO pretreatments may be used as a new suitable strategy to improve bonding of water-based adhesives to demineralized air-dried dentin beyond conventional wetbonding. Less porous resin-dentin interfaces with higher bond strengths on air-dried etched dentin were achieved; nonetheless, overall efficiency varied according to DMSO's co-solvent and adhesive type. Clinical significance. DMSO pretreatments permit etched dentin to be air-dried before hybridization facilitating residual water removal and thus improving bonding effectiveness. This challenges the current paradigm of wet-bonding requirement for the etch-and-rinse approach creating new possibilities to enhance the clinical longevity of resin-dentin interfaces. (C) 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.