Browsing by Subject "DNA barcoding"

Sort by: Order: Results:

Now showing items 1-20 of 21
  • Crespo, L.C.; Domenech, M; Enguídanos, A.; Malumbres-Olarte, Jagoba; Cardoso, Pedro; Moya-Larano, J; Frias-Lopez, Cristina; Macias Hernandez, Nuria Esther; de Mas, Eva; Mazzuca, Paola; Mora, E.; Opatova, Vera; Planas, Enric; Ribera, Carles; Roca-Cusachs, M.; Ruiz, D.; Sousa, Pedro; Tonzo, V.; Arnedo, M.A. (2018)
    Background A large scale semi-quantitative biodiversity assessment was conducted in white oak woodlands in areas included in the Spanish Network of National Parks, as part of a project aimed at revealing biogeographic patterns and identify biodiversity drivers. The semi-quantitative COBRA sampling protocol was conducted in sixteen 1-ha plots across six national parks using a nested design. All adult specimens were identified to species level based on morphology. Uncertain delimitations and identifications due to either limited information of diagnostic characters or conflicting taxonomy were further investigated using DNA barcode information. New information We identified 376 species belonging to 190 genera in 39 families, from the 8,521 adults found amongst the 20,539 collected specimens. Faunistic results include the discovery of 7 new species to the Iberian Peninsula, 3 new species to Spain and 11 putative new species to science. As largely expected by environmental features, the southern parks showed a higher proportion of Iberian and Mediterranean species than the northern parks, where the Palearctic elements were largely dominant. The analysis of approximately 3,200 DNA barcodes generated in the present study, corroborated and provided finer resolution to the morphologically based delimitation and identification of specimens in some taxonomically challenging families. Specifically, molecular data confirmed putative new species with diagnosable morphology, identified overlooked lineages that may constitute new species, confirmed assignment of specimens of unknown sexes to species and identified cases of misidentifications and phenotypic polymorphisms.
  • Ramage, Thibault; Martins-Simoes, Patricia; Mialdea, Gladys; Allemand, Roland; Duplouy, Anne; Rousse, Pascal; Davies, Neil; Roderick, George K.; Charlat, Sylvain (2017)
    We report here on the taxonomic and molecular diversity of 10 929 terrestrial arthropod specimens, collected on four islands of the Society Archipelago, French Polynesia. The survey was part of the 'SymbioCode Project' that aims to establish the Society Islands as a natural laboratory in which to investigate the flux of bacterial symbionts (e.g., Wolbachia) and other genetic material among branches of the arthropod tree. The sample includes an estimated 1127 species, of which 1098 included at least one DNA-barcoded specimen and 29 were identified to species level using morphological traits only. Species counts based on molecular data emphasize that some groups have been understudied in this region and deserve more focused taxonomic effort, notably Diptera, Lepidoptera and Hymenoptera. Some taxa that were also subjected to morphological scrutiny reveal a consistent match between DNA and morphology-based species boundaries in 90% of the cases, with a larger than expected genetic diversity in the remaining 10%. Many species from this sample are new to this region or are undescribed. Some are under description, but many await inspection by motivated experts, who can use the online images or request access to ethanol-stored specimens.
  • Pellinen, Markku J.; Zahiri, Reza; Sihvonen, Pasi (2020)
    A new species of Sacada from northern Thailand is described: S. chaehomensis sp. nov. Pellinen & Zahiri (Lepidoptera: Pyralidae, Pyralinae). Morphological characters and DNA barcode data are provided for the new species, with a morphological comparison to S. dzonguensis and S. umtasorensis, and a DNA-barcode comparison to S. ragonotalis and S. albioculalis, respectively. After this addition, the current number of valid species in the genus Sacada is 43.
  • Kaila, Lauri; Mutanen, Marko; Sihvonen, Pasi; Tyllinen, Juha; Tabell, Jukka (2019)
    Morphological traits characterizing and delimiting Pleurotinae (Oecophoridae) are provided and discussed. The evidence supports the validity of the subfamily as suggested by recent molecular studies. The Pleurota aristella (Linnaeus, 1767) species group is characterized, and six new species belonging to the group from Morocco are described: Pleurota tricolor Tabell, sp. nov., P. pellicolor Tabell, sp. nov., P. lacteella Tabell, sp. nov., P. moroccoensis Tabell, sp. nov., P. ochreopalpella Tabell, sp. nov., and P. atlasensis Tabell, sp. nov. Habitus images and label data are provided for the types of P. goundafella Zerny, 1935; P. insignella Zerny, 1935; P. ochreostrigella Baker, 1885; P. macrosella Rebel, 1900; P. staintoniella Baker, 1888; P. mauretanica Baker, 1888; and P. algeriella Baker, 1885. DNA barcodes of the new species are compared with all available Pleurotinae sequences (BIN n = 117) in BOLD.
  • Zheng, Shuyu; Poczai, Peter; Hyvönen, Jaakko; Tang, Jing; Amiryousefi, Ali (2020)
    Understanding the complexity of genomic structures and their unique architecture is linked with the power of visualization tools used to represent these features. Such tools should be able to provide a realistic and scalable version of genomic content. Here, we present an online organelle plotting tool focused on chloroplasts, which were developed to visualize the exclusive structure of these genomes. The distinguished unique features of this program include its ability to represent the Single Short Copy (SSC) regions in reverse complement, which allows the depiction of the codon usage bias index for each gene, along with the possibility of the minor mismatches between inverted repeat (IR) regions and user-specified plotting layers. The versatile color schemes and diverse functionalities of the program are specifically designed to reflect the accurate scalable representation of the plastid genomes. We introduce a Shiny app website for easy use of the program; a more advanced application of the tool is possible by further development and modification of the downloadable source codes provided online. The software and its libraries are completely coded in R, available at https://irscope.shinyapps.io/chloroplot/.
  • Tabell, Jukka; Mutanen, Marko; Sihvonen, Pasi (2018)
    Five new Coleophora species belonging to the C. poecilella species group are described: C. mirleftensis Tabell, sp. nov. from Morocco, C. embaensis Tabell, sp. nov. and C. charynensis Tabell, sp. nov. from Kazakhstan, C. nupponeni Tabell, sp. nov. from Kazakhstan and Tajikistan, and C. tugaicola Tabell, sp. nov. from Tajikistan. The male genitalia of C. hypomona (Falkovitsh, 1979) and the female genitalia of C. trichopterella Baldizzone, 1985 are illustrated for the first time. DNA barcodes are provided for each species, with a comparison to the genetically most similar species.
  • Huemer, Peter; Karsholt, Ole; Aarvik, Leif; Berggren, Kai; Bidzilya, Olexey; Junnilainen, Jari Kalevi; Landry, Jean-Francois; Mutanen, Marko; Nupponen, Kari; Segerer, Andreas; Šumpich, Jan; Wieser, Christian; Wiesmair, Benjamin; Herbert, Paul D. N. D. N. (2020)
    For the first time, a nearly complete barcode library for European Gelechiidae is provided. DNA barcode sequences (COI gene – cytochrome c oxidase 1) from 751 out of 865 nominal species, belonging to 105 genera, were successfully recovered. A total of 741 species represented by specimens with sequences ≥ 500bp and an additional ten species represented by specimens with shorter sequences were used to produce 53 NJ trees. Intraspecific barcode divergence averaged only 0.54% whereas distance to the Nearest-Neighbour species averaged 5.58%. Of these, 710 species possessed unique DNA barcodes, but 31 species could not be reliably discriminated because of barcode sharing or partial barcode overlap. Species discrimination based on the Barcode Index System (BIN) was successful for 668 out of 723 species which clustered from minimum one to maximum 22 unique BINs. Fifty-five species shared a BIN with up to four species and identification from DNA barcode data is uncertain. Finally, 65 clusters with a unique BIN remained unidentified to species level. These putative taxa, as well as 114 nominal species with more than one BIN, suggest the presence of considerable cryptic diversity, cases which should be examined in future revisionary studies.
  • Kekkonen, Mari; Hebert, Paul D. N. (2014)
    The analysis of DNA barcode sequences with varying techniques for cluster recognition provides an efficient approach for recognizing putative species (operational taxonomic units, OTUs). This approach accelerates and improves taxonomic workflows by exposing cryptic species and decreasing the risk of synonymy. This study tested the congruence of OTUs resulting from the application of three analytical methods (ABGD, BIN, GMYC) to sequence data for Australian hypertrophine moths. OTUs supported by all three approaches were viewed as robust, but 20% of the OTUs were only recognized by one or two of the methods. These OTUs were examined for three criteria to clarify their status. Monophyly and diagnostic nucleotides were both uninformative, but information on ranges was useful as sympatric sister OTUs were viewed as distinct, while allopatric OTUs were merged. This approach revealed 124 OTUs of Hypertrophinae, a more than twofold increase from the currently recognized 51 species. Because this analytical protocol is both fast and repeatable, it provides a valuable tool for establishing a basic understanding of species boundaries that can be validated with subsequent studies.
  • Pohjoismäki, Jaakko; Kahanpää, Jere Veikko; Mutanen, Marko (2016)
    This data release provides COI barcodes for 366 species of parasitic flies (Diptera: Tachinidae), enabling the DNA based identification of the majority of northern European species and a large proportion of Palearctic genera, regardless of the developmental stage. The data will provide a tool for taxonomists and ecologists studying this ecologically important but challenging parasitoid family. A comparison of minimum distances between the nearest neighbors revealed the mean divergence of 5.52% that is approximately the same as observed earlier with comparable sampling in Lepidoptera, but clearly less than in Coleoptera. Full barcode-sharing was observed between 13 species pairs or triplets, equaling to 7.36% of all species. Delimitation based on Barcode Index Number (BIN) system was compared with traditional classification of species and interesting cases of possible species oversplits and cryptic diversity are discussed. Overall, DNA barcodes are effective in separating tachinid species and provide novel insight into the taxonomy of several genera.
  • Mutanen, Marko; Ovaskainen, Otso; Várkonyi, Gergely; Itämies, Juhani; Prosser, Sean W. J.; Hebert, Paul D. N.; Hanski, Ilkka (2020)
    Abstract It has been hypothesised that the 2-year oscillations in abundance of Xestia moths are mediated by interactions with 1-year Ophion parasitoid wasps. We tested this hypothesis by modelling a 35-year time series of Xestia and Ophion from Northern Finland. Additionally, we used DNA barcoding to ascertain the species diversity of Ophion and targeted amplicon sequencing of their gut contents to confirm their larval hosts. Modelling of the time-series data strongly supported the hypothesised host?parasitoid dynamics and that periodic occurrence of Xestia moths is mediated by Ophion. DNA barcodes revealed that Ophion included five species rather than just one while targeted amplicon sequencing verified that Ophion does parasitise Xestia. At least one Ophion species employs 1-year Syngrapha interrogationis as an alternate host, but it did not detectably affect Xestia?Ophion dynamics. We also demonstrate the previously unrecognised complexity of this system due to cryptic parasitoid diversity.
  • Wirta, Helena K.; Vesterinen, Eero J.; Hamback, Peter A.; Weingartner, Elisabeth; Rasmussen, Claus; Reneerkens, Jeroen; Schmidt, Niels M.; Gilg, Olivier; Roslin, Tomas (2015)
    How food webs are structured has major implications for their stability and dynamics. While poorly studied to date, arctic food webs are commonly assumed to be simple in structure, with few links per species. If this is the case, then different parts of the web may be weakly connected to each other, with populations and species united by only a low number of links. We provide the first highly resolved description of trophic link structure for a large part of a high-arctic food web. For this purpose, we apply a combination of recent techniques to describing the links between three predator guilds (insectivorous birds, spiders, and lepidopteran parasitoids) and their two dominant prey orders (Diptera and Lepidoptera). The resultant web shows a dense link structure and no compartmentalization or modularity across the three predator guilds. Thus, both individual predators and predator guilds tap heavily into the prey community of each other, offering versatile scope for indirect interactions across different parts of the web. The current description of a first but single arctic web may serve as a benchmark toward which to gauge future webs resolved by similar techniques. Targeting an unusual breadth of predator guilds, and relying on techniques with a high resolution, it suggests that species in this web are closely connected. Thus, our findings call for similar explorations of link structure across multiple guilds in both arctic and other webs. From an applied perspective, our description of an arctic web suggests new avenues for understanding how arctic food webs are built and function and of how they respond to current climate change. It suggests that to comprehend the community-level consequences of rapid arctic warming, we should turn from analyses of populations, population pairs, and isolated predator-prey interactions to considering the full set of interacting species.
  • Tiusanen, Mikko; Huotari, Tea; Hebert, Paul D. N.; Andersson, Tommi; Asmus, Ashley; Bety, Joel; Davis, Emma; Gale, Jennifer; Hardwick, Bess; Hik, David; Körner, Christian; Lanctot, Richard B.; Loonen, Maarten J. J. E.; Partanen, Rauni; Reischke, Karissa; Saalfeld, Sarah T.; Senez-Gagnon, Fanny; Smith, Paul A.; Sulavik, Jan; Syvanpera, Ilkka; Urbanowicz, Christine; Williams, Sian; Woodard, Paul; Zaika, Yulia; Roslin, Tomas (2019)
    Pollination is an ecosystem function of global importance. Yet, who visits the flower of specific plants, how the composition of these visitors varies in space and time and how such variation translates into pollination services are hard to establish. The use of DNA barcodes allows us to address ecological patterns involving thousands of taxa that are difficult to identify. To clarify the regional variation in the visitor community of a widespread flower resource, we compared the composition of the arthropod community visiting species in the genus Dryas (mountain avens, family Rosaceae), throughout Arctic and high-alpine areas. At each of 15 sites, we sampled Dryas visitors with 100 sticky flower mimics and identified specimens to Barcode Index Numbers (BINs) using a partial sequence of the mitochondrial COI gene. As a measure of ecosystem functioning, we quantified variation in the seed set of Dryas. To test for an association between phylogenetic and functional diversity, we characterized the structure of local visitor communities with both taxonomic and phylogenetic descriptors. In total, we detected 1,360 different BINs, dominated by Diptera and Hymenoptera. The richness of visitors at each site appeared to be driven by local temperature and precipitation. Phylogeographic structure seemed reflective of geological history and mirrored trans-Arctic patterns detected in plants. Seed set success varied widely among sites, with little variation attributable to pollinator species richness. This pattern suggests idiosyncratic associations, with function dominated by few and potentially different taxa at each site. Taken together, our findings illustrate the role of post-glacial history in the assembly of flower-visitor communities in the Arctic and offer insights for understanding how diversity translates into ecosystem functioning.
  • Rytkönen, Seppo; Vesterinen, Eero J.; Westerduin, Coen; Leviäkangas, Tiina; Vatka, Emma; Mutanen, Marko; Välimäki, Panu; Hukkanen, Markku; Suokas, Marko; Orell, Markku (2019)
    Diets play a key role in understanding trophic interactions. Knowing the actual structure of food webs contributes greatly to our understanding of biodiversity and ecosystem functioning. The research of prey preferences of different predators requires knowledge not only of the prey consumed, but also of what is available. In this study, we applied DNA metabarcoding to analyze the diet of 4 bird species (willow tits Poecile montanus, Siberian tits Poecile cinctus, great tits Parus major and blue tits Cyanistes caeruleus) by using the feces of nestlings. The availability of their assumed prey (Lepidoptera) was determined from feces of larvae (frass) collected from the main foraging habitat, birch (Betula spp.) canopy. We identified 53 prey species from the nestling feces, of which 11 (21%) were also detected from the frass samples (eight lepidopterans). Approximately 80% of identified prey species in the nestling feces represented lepidopterans, which is in line with the earlier studies on the parids' diet. A subsequent laboratory experiment showed a threshold for fecal sample size and the barcoding success, suggesting that the smallest frass samples do not contain enough larval DNA to be detected by high-throughput sequencing. To summarize, we apply metabarcoding for the first time in a combined approach to identify available prey (through frass) and consumed prey (via nestling feces), expanding the scope and precision for future dietary studies on insectivorous birds.
  • Akimov, Yevhen; Bulanova, Daria; Timonen, Sanna; Wennerberg, Krister; Aittokallio, Tero (2020)
    Abstract Cellular DNA barcoding has become a popular approach to study heterogeneity of cell populations and to identify clones with differential response to cellular stimuli. However, there is a lack of reliable methods for statistical inference of differentially responding clones. Here, we used mixtures of DNA-barcoded cell pools to generate a realistic benchmark read count dataset for modelling a range of outcomes of clone-tracing experiments. By accounting for the statistical properties intrinsic to the DNA barcode read count data, we implemented an improved algorithm that results in a significantly lower false-positive rate, compared to current RNA-seq data analysis algorithms, especially when detecting differentially responding clones in experiments with strong selection pressure. Building on the reliable statistical methodology, we illustrate how multidimensional phenotypic profiling enables one to deconvolute phenotypically distinct clonal subpopulations within a cancer cell line. The mixture control dataset and our analysis results provide a foundation for benchmarking and improving algorithms for clone-tracing experiments.
  • Mutanen, Marko; Huemer, Peter; Autto, Jonna; Karsholt, Ole; Kaila, Lauri (2020)
    Monopis jussii Kaila, Mutanen, Huemer, Karsholt & Autto, sp. nov. (Lepidoptera, Tineidae) is described as a new species. It is closely related to the widespread and common M. laevigella ([Denis & Schiffermul-ler], 1775), but differs in its distinct COI DNA barcode sequences, four examined nuclear loci as well as details in forewing coloration and pattern. Most reared specimens of M. jussii have emerged from the nest remnants of the Boreal owl (Aegolius funereus (Linnaeus, 1758)), but also nests of the Ural owl (Strix uralensis Pallas, 1771) and the Great tit (Parus major Linnaeus, 1758) have been observed as suitable habitats. Based on the present knowledge, the new species has a boreo-montane distribution as it is recorded only from northern Europe and the Alps. Several extensive rearing experiments from Strix spp. nest remnants from southern Finland did not produce any M. jussii, but thousands of M. laevigella, suggesting that the species is lacking in the area or, more unlikely, that the nest of these owl species do not serve as good habitat for the new species. This unexpected species discovery highlights, once again, the usefulness of DNA barcoding in revealing the cryptic layers of biodiversity. To serve stability we select a neotype for Tinea laevigella [Denis & Schiffermuller], 1775, and discuss the complicated synonymy and nomenclature of this species.
  • Aracil, Andrea; Perez-Banon, Celeste; Mengual, Ximo; Radenkovic, Snezana; Ståhls, Gunilla; Vujic, Ante; Rojo, Santos (2019)
    Pre-imaginal morphology of the flower fly species Graptomyza signata (Walker) is described and figured in detail based on specimens collected on a decomposed Aloe-like plant in KwaZulu-Natal province, South Africa. Third-instar larva is described for the first time and the puparium morphology is re-described using both light (optical) and electron microscopy. The present work represents the second larval description for a species of the genus Graptomyza, after the description of the larva of G. alabeta Seguy. The immatures of these two Graptomyza species were examined and compared to the pre-imaginal stages of the other members of the tribe Volucellini, pointing out the possible diagnostic characters of the genus Graptomyza. Moreover, new DNA barcodes are provided for G. signata and deposited in the NCBI GenBank.
  • Kankaanpaa, Tuomas; Vesterinen, Eero; Hardwick, Bess; Schmidt, Niels M.; Andersson, Tommi; Aspholm, Paul E.; Barrio, Isabel C.; Beckers, Niklas; Bety, Joel; Birkemoe, Tone; DeSiervo, Melissa; Drotos, Katherine H.; Ehrich, Dorothee; Gilg, Olivier; Gilg, Vladimir; Hein, Nils; Hoye, Toke T.; Jakobsen, Kristian M.; Jodouin, Camille; Jorna, Jesse; Kozlov, Mikhail; Kresse, Jean-Claude; Leandri-Breton, Don-Jean; Lecomte, Nicolas; Loonen, Maarten; Marr, Philipp; Monckton, Spencer K.; Olsen, Maia; Otis, Josee-Anne; Pyle, Michelle; Roos, Ruben E.; Raundrup, Katrine; Rozhkova, Daria; Sabard, Brigitte; Sokolov, Aleksandr; Sokolova, Natalia; Solecki, Anna M.; Urbanowicz, Christine; Villeneuve, Catherine; Vyguzova, Evgenya; Zverev, Vitali; Roslin, Tomas (2020)
    Climatic impacts are especially pronounced in the Arctic, which as a region is warming twice as fast as the rest of the globe. Here, we investigate how mean climatic conditions and rates of climatic change impact parasitoid insect communities in 16 localities across the Arctic. We focus on parasitoids in a widespread habitat,Dryasheathlands, and describe parasitoid community composition in terms of larval host use (i.e., parasitoid use of herbivorous Lepidoptera vs. pollinating Diptera) and functional groups differing in their closeness of host associations (koinobionts vs. idiobionts). Of the latter, we expect idiobionts-as being less fine-tuned to host development-to be generally less tolerant to cold temperatures, since they are confined to attacking hosts pupating and overwintering in relatively exposed locations. To further test our findings, we assess whether similar climatic variables are associated with host abundances in a 22 year time series from Northeast Greenland. We find sites which have experienced a temperature rise in summer while retaining cold winters to be dominated by parasitoids of Lepidoptera, with the reverse being true for the parasitoids of Diptera. The rate of summer temperature rise is further associated with higher levels of herbivory, suggesting higher availability of lepidopteran hosts and changes in ecosystem functioning. We also detect a matching signal over time, as higher summer temperatures, coupled with cold early winter soils, are related to high herbivory by lepidopteran larvae, and to declines in the abundance of dipteran pollinators. Collectively, our results suggest that in parts of the warming Arctic,Dryasis being simultaneously exposed to increased herbivory and reduced pollination. Our findings point to potential drastic and rapid consequences of climate change on multitrophic-level community structure and on ecosystem functioning and highlight the value of collaborative, systematic sampling effort.
  • Tabell, Jukka; Wikström, Bo; Mutanen, Marko; Bruckner, Harald; Sihvonen, Pasi (2021)
    The identities of five subspecies of Pleurota bicostella (Clerck, 1759) are studied, and each is raised from subspecies to species: P. andalusica Back, 1973, stat. nov.; P. aragonella Chrétien, 1925, stat. rev.; P. asiatica Back, 1973, stat. nov.; P. illucidella Chrétien, 1915, stat. rev.; P. lepigrei Lucas, 1937, stat. rev. Nine new Pleurota species which all belong to the P. bicostella species group are described: P. agadirensis Tabell, sp. nov.; P. aprilella Tabell, sp. n.; P. karsholti Tabell, sp. nov.; P. kullbergi Tabell, sp. nov.; P. monochroma Tabell, sp. nov.; P. murina Tabell, sp. nov.; P. paragallicella Tabell, sp. nov; P. phaeolepida Tabell, sp. nov., all from Morocco; and P. dalilae Tabell, sp. nov. from Tunisia. Adult males and females, and their genitalia are illustrated. DNA barcodes of the aforementioned species are compared with those of all other Pleurotinae available to us in the BOLD database. Each of the presented and barcoded species has a unique BIN (Barcode Index Number).
  • Pykälä, Juha; Kantelinen, Annina; Myllys, Leena (2020)
    Species of Verrucaria, characterised by large spores (at least some spores exceeding 25 mu m in length), perithecia leaving pits in the rock and a pale thin thallus, form a taxonomically-difficult and poorlyknown group. In this study, such species occurring in Finland are revised, based on ITS sequences and morphology. Maximum likelihood analysis of ITS sequence data was used to examine if the species belong to the Thelidium group, as suggested by BLAST search. Twelve species are accepted in Finland: Verrucaria bifurcata sp. nov., V. cavernarum sp. nov., V. devergens, V. difficilis sp. nov., V. foveolata, V. fuscozonata sp. nov., V. karelica, V. kuusamoensis sp. nov., V. subdevergens sp. nov., V. subjunctiva, V. subtilis and V. vacillans sp. nov. Verrucaria foveolata is nested in V. subjunctiva in the phylogeny, but due to morphological and ecogeographical differences, the two taxa are treated as separate species pending further studies. Based on the analysis, the study species belong to the Thelidium group. The studied species show a rather high infraspecific morphological, but a low genetic variation. Furthermore, they show considerable overlap in their morphology and many specimens cannot be reliably identified, based on morphology only. All species arc restricted to calcareous rocks. Verrucaria alpigena, V. cinereoruh and V. bochstetteri are excluded from the lichen flora of Finland. Verrucaria gmssa is considered a species with unresolved identity. Verrucaria foveolata and V. subtilis are rather common on calcareous rocks of Finland while V. devergens and V. kuusamoensis are restricted to northern Finland. Verrucaria subjunctiva occurs mainly in northern Finland. Verrucaria bifurcata has been found only from southern Finland. Verrucaria difficilis has few localities both in SW and NE Finland. Verrucaria vaeillans is restricted to calcareous roc ks (dolomite) on the mountains of the NW corner of Finland. Verrucaria Jiacozonata, V. karelica and V. sulideveTens occur only in the Oulanka area in NE Finland. A lectotype is designated for V. subjunctiva. The morphology of the Finnish species was compared with 51 European species of Verrucaria presumably belonging to the Theliolium group.
  • Korpelainen, Helena; Pietilainen, Maria (2019)
    We have produced DNA barcodes for Finnish plant taxa. In this study, we specifically report the barcoding success for herbarium materials varying widely in age, also paying attention on success rate variation and genetic distances among different plant families. Additionally, we investigated whether the level of intraspecific variation differs between native and introduced species. The specimens had been collected between years 1867 and 2013. Among all studied specimens, the average success rates for any barcode (matK or rbcL), rbcL, matK and both barcodes equaled 81, 79, 55 and 53%, respectively, and among species (at least one specimen per species barcoded successfully) 95, 95, 74 and 73%, respectively. We found significant age effects on the barcoding success, the greatest decline being visible in over 100-year-old samples. Plant families showed differences in overall success rates and sample age effects, as well as in intraspecific and interspecific variation levels, while the average level of intraspecific variation appeared similar among native and introduced species. Besides being valuable for the identification of species, DNA barcoding with sufficient sampling is also a tool to investigate specific evolutionary questions, such as biogeographic patterns or the adaptive capacity of invasive and other alien plant species.