Browsing by Subject "DNA-REPLICATION"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Sillaste, Gerly; Kaplinski, Lauris; Meier, Riho; Jaakma, Uelle; Eriste, Elo; Salumets, Andres (2017)
    DNA compaction with protamines in sperm is essential for successful fertilization. However, a portion of sperm chromatin remains less tightly packed with histones, which genomic location and function remain unclear. We extracted and sequenced histone-associated DNA from sperm of nine ejaculates from three bulls. We found that the fraction of retained histones varied between samples, but the variance was similar between samples from the same and different individuals. The most conserved regions showed similar abundance across all samples, whereas in other regions, their presence correlated with the size of histone fraction. This may refer to gradual histone-protamine transition, where easily accessible genomic regions, followed by the less accessible regions are first substituted by protamines. Our results confirm those from previous studies that histones remain in repetitive genome elements, such as centromeres, and added new findings of histones in rRNA and SRP RNA gene clusters and indicated histone enrichment in some spermatogenesis-associated genes, but not in genes of early embryonic development. Our functional analysis revealed significant overrepresentation of cGMP-dependent protein kinase G (cGMP-PKG) pathway genes among histone-enriched genes. This pathway is known for its importance in pre-fertilization sperm events. In summary, a novel hypothesis for gradual histone-toprotamine transition in sperm maturation was proposed. We believe that histones may contribute structural information into early embryo by epigenetically modifying centromeric chromatin and other types of repetitive DNA. We also suggest that sperm histones are retained in genes needed for sperm development, maturation and fertilization, as these genes are transcriptionally active shortly prior to histone-to-protamine transition.
  • Prusty, Bhupesh K.; Siegl, Christine; Hauck, Petra; Hain, Johannes; Korhonen, Suvi J.; Hiltunen-Back, Eija; Puolakkainen, Mirja; Rudel, Thomas (2013)
  • Chang, Hae Ryung; Cho, Sung Yoon; Lee, Jae Hoon; Lee, Eunkyung; Seo, Jieun; Lee, Hye Ran; Cavalcanti, Denise P.; Mäkitie, Outi; Valta, Helena; Girisha, Katta M.; Lee, Chung; Neethukrishna, Kausthubham; Bhavani, Gandham S.; Shukla, Anju; Nampoothiri, Sheela; Phadkei, Shubha R.; Park, Mi Jung; Ikegawa, Shiro; Wang, Zheng; Higgs, Martin R.; Stewart, Grant S.; Jung, Eunyoung; Lee, Myeong-Sok; Park, Jong Hoon; Lee, Eun A.; Kim, Hongtae; Myung, Kyungjae; Jeon, Woosung; Lee, Kyoungyeul; Kim, Dongsup; Kim, Ok-Hwa; Choi, Murim; Lee, Han-Woong; Kim, Yonghwan; Cho, Tae-Joon (2019)
    SPONASTRIME dysplasia is a rare, recessive skeletal dysplasia characterized by short stature, facial dysmorphism, and aberrant radiographic findings of the spine and long bone metaphysis. No causative genetic alterations for SPONASTRIME dysplasia have yet been determined. Using whole-exome sequencing (WES), we identified bi-allelic TONSL mutations in 10 of 13 individuals with SPONASTRIME dysplasia. TONSL is a multi-domain scaffold protein that interacts with DNA replication and repair factors and which plays critical roles in resistance to replication stress and the maintenance of genome integrity. We show here that cellular defects in dermal fibroblasts from affected individuals are complemented by the expression of wild-type TONSL. In addition, in vitro cell-based as-says and in silico analyses of TONSL structure support the pathogenicity of those TONSL variants. Intriguingly, a knock-in (KI) Tonsl mouse model leads to embryonic lethality, implying the physiological importance of TONSL. Overall, these findings indicate that genetic variants resulting in reduced function of TONSL cause SPONASTRIME dysplasia and highlight the importance of TONSL in embryonic development and postnatal growth.
  • Mizuno, Carolina M.; Prajapati, Bina; Lucas-Staat, Soizick; Sime-Ngando, Telesphore; Forterre, Patrik; Bamford, Dennis Henry; Prangishvili, David; Krupovic, Mart; Oksanen, Hanna Maarit (2019)
    The diversity of archaeal viruses is severely undersampled compared with that of viruses infecting bacteria and eukaryotes, limiting our understanding on their evolution and environmental impacts. Here, we describe the isolation and characterization of four new viruses infecting halophilic archaea from the saline Lake Retba, located close to Dakar on the coast of Senegal. Three of the viruses, HRPV10, HRPV11 and HRPV12, have enveloped pleomorphic virions and should belong to the family Pleolipoviridae, whereas the forth virus, HFTV1, has an icosahedral capsid and a long non-contractile tail, typical of bacterial and archaeal members of the order Caudovirales. Comparative genomic and phylogenomic analyses place HRPV10, HRPV11 and HRPV12 into the genus Betapleolipovirus, whereas HFTV1 appears to be most closely related to the unclassified Halorubrum virus HRTV-4. Differently from HRTV-4, HFTV1 encodes host-derived minichromosome maintenance helicase and PCNA homologues, which are likely to orchestrate its genome replication. HFTV1, the first archaeal virus isolated on a Haloferax strain, could also infect Halorubrum sp., albeit with an eightfold lower efficiency, whereas pleolipoviruses nearly exclusively infected autochthonous Halorubrum strains. Mapping of the metagenomic sequences from this environment to the genomes of isolated haloarchaeal viruses showed that these known viruses are underrepresented in the available viromes.