Browsing by Subject "DOUBLE-STRANDED-RNA"

Sort by: Order: Results:

Now showing items 1-10 of 10
  • Gonzalez de Cozar, Jose M.; Carretero-Junquera, Maria; Ciesielski, Grzegorz L.; Miettinen, Sini M.; Varjosalo, Markku; Kaguni, Laurie S.; Dufour, Eric; Jacobs, Howard T. (2020)
    In eukaryotes, ribonuclease H1 (RNase H1) is involved in the processing and removal of RNA/DNA hybrids in both nuclear and mitochondrial DNA. The enzyme comprises a C-terminal catalytic domain and an N-terminal hybrid-binding domain (HBD), separated by a linker of variable length, 115 amino acids in Drosophila melanogaster (Dm). Molecular modelling predicted this extended linker to fold into a structure similar to the conserved HBD. Based on a deletion series, both the catalytic domain and the conserved HBD were required for high-affinity binding to heteroduplex substrates, while loss of the novel HBD led to an similar to 90% drop in K-cat with a decreased K-M, and a large increase in the stability of the RNA/DNA hybrid-enzyme complex, supporting a bipartite-binding model in which the second HBD facilitates processivity. Shotgun proteomics following in vivo cross-linking identified single-stranded DNA-binding proteins from both nuclear and mitochondrial compartments, respectively RpA-70 and mtSSB, as prominent interaction partners of Dm RNase H1. However, we were not able to document direct and stable interactions with mtSSB when the proteins were cooverexpressed in S2 cells, and functional interactions between them in vitro were minor.
  • Levanova, Alesia; Poranen, Minna Marjetta (2018)
    Steric exclusion chromatography (SXC) is a method for separation of large target solutes based on their association with a hydrophilic stationary phase through mutual steric exclusion of polyethylene glycol (PEG). Selectivity in SXC is determined by the size or shape (or both) of the solutes alongside the size and concentration of PEG molecules. Elution is achieved by decreasing the PEG concentration. In this study, SXC applicability for the separation and purification of single-stranded (ss) and double-stranded (ds) RNA molecules was evaluated for the first time. The retention of ssRNA and dsRNA molecules of different lengths on convective interaction media (CIM) monolithic columns was systematically studied under variable PEG-6000 and NaCl concentrations. We determined that over 90% of long ssRNAs (700-6374 nucleotides) and long dsRNAs (500-6374 base pairs) are retained on the stationary phase in 15% PEG-6000 and >= 0.4 M NaCl. dsDNA and dsRNA molecules of the same length were partially separated by SXC. Separation of RNA molecules below 100 nucleotides from longer RNA species is easily achieved by SXC. Furthermore, SXC has the potential to separate dsRNAs from ssRNAs of the same length. We also demonstrated that SXC is suitable for the enrichment of ssRNA (PRR1 bacteriophage) and dsRNA (Phi6 bacteriophage) viral genomes from contaminating cellular RNA species. In summary, SXC on CIM monolithic columns is an appropriate tool for rapid RNA separation and concentration. (C) 2018 The Authors. Published by Elsevier B.V.
  • Wang, Linping; Saarela, Jani; Poque, Sylvain; Valkonen, Jari P. T. (2020)
    The class 1 ribonuclease III (RNase III) encoded by Sweet potato chlorotic stunt virus (CSR3) suppresses RNA silencing in plant cells and thereby counters the host antiviral response by cleaving host small interfering RNAs, which are indispensable components of the plant RNA interference (RNAi) pathway. The synergy between sweet potato chlorotic stunt virus and sweet potato feathery mottle virus can reduce crop yields by 90%. Inhibitors of CSR3 might prove efficacious to counter this viral threat, yet no screen has been carried out to identify such inhibitors. Here, we report a novel high-throughput screening (HTS) assay based on fluorescence resonance energy transfer (FRET) for identifying inhibitors of CSR3. For monitoring CSR3 activity via HTS, we used a small interfering RNA substrate that was labelled with a FRET-compatible dye. The optimized HTS assay yielded 109 potential inhibitors of CSR3 out of 6,620 compounds tested from different small-molecule libraries. The three best inhibitor candidates were validated with a dose-response assay. In addition, a parallel screen of the selected candidates was carried out for a similar class 1 RNase III enzyme from Escherichia coli (EcR3), and this screen yielded a different set of inhibitors. Thus, our results show that the CSR3 and EcR3 enzymes were inhibited by distinct types of molecules, indicating that this HTS assay could be widely applied in drug discovery of class 1 RNase III enzymes.
  • Choi, Jaeyoung; Kim, Ki-Tae; Jeon, Jongbum; Wu, Jiayao; Song, Hyeunjeong; Asiegbu, Fred O.; Lee, Yong-Hwan (2014)
  • Jiang, Miao; Österlund, Pamela; Poranen, Minna; Julkunen, Ilkka (2020)
    Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5-mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.
  • Anastasina, Maria; Le May, Nicolas; Bugai, Andrii; Fu, Yu; Soderholm, Sandra; Gaelings, Lana; Ohman, Tiina; Tynell, Janne; Kyttanen, Suvi; Barboric, Matjaz; Nyman, Tuula A.; Matikainen, Sampsa; Julkunen, Ilkka; Butcher, Sarah J.; Egly, Jean-Marc; Kainov, Denis E. (2016)
    Influenza NS1 protein is an important virulence factor that is capable of binding double-stranded (ds) RNA and inhibiting dsRNA-mediated host innate immune responses. Here we show that NS1 can also bind cellular dsDNA. This interaction prevents loading of transcriptional machinery to the DNA, thereby attenuating IAV-mediated expression of antiviral genes. Thus, we identified a previously undescribed strategy, by which RNA virus inhibits cellular transcription to escape antiviral response and secure its replication. (C) 2016 Elsevier B.V. All rights reserved.
  • Collier, Aaron M.; Lyytinen, Outi L.; Guo, Yusong R.; Toh, Yukimatsu; Poranen, Minna M.; Tao, Yizhi J. (2016)
    During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 angstrom resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.
  • Mäntynen, Sari; Sundberg, Lotta-Riina; Poranen, Minna Marjetta (2018)
    Cystoviridae is a family of bacterial viruses (bacteriophages) with a tri-segmented dsRNA genome. It includes a single genus Cystovirus, which has presently only one recognised virus species, Pseudomonas virus phi6. However, a large number of additional dsRNA phages have been isolated from various environmental samples, indicating that such viruses are more widespread and abundant than previously recognised. Six of the additional dsRNA phage isolates (Pseudomonas phages phi8, phi12, phi13, phi2954, phiNN and phiYY) have been fully sequenced. They all infect Pseudomonas species, primarily plant pathogenic Pseudomonas syringae strains. Due to the notable genetic and structural similarities with Pseudomonas phage phi6, we propose that these viruses should be included into the Cystovirus genus (and consequently into the Cystoviridae family). Here, we present an updated taxonomy of the family Cystoviridae and give a short overview of the properties of the type member phi6 as well as the putative new members of the family.
  • Levanova, Alesia; Poranen, Minna M. (2018)
    RNA interference (RNAi), which is mediated by small interfering RNAs (siRNAs) derived from viral genome or its replicative intermediates, is a natural antiviral defense in plants, fungi, and invertebrates. Whether RNAi naturally protects humans from viral invasion is still a matter of debate. Nevertheless, exogenous siRNAs are able to halt viral infection in mammals. The current review critically evaluates the production of antiviral siRNAs, delivery techniques to the infection sites, as well as provides an overview of antiviral siRNAs in clinical trials.
  • Levanova, Alesia A.; Vainio, Eeva J.; Hantula, Jarkko; Poranen, Minna M. (2021)
    Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.