Browsing by Subject "DOXORUBICIN"

Sort by: Order: Results:

Now showing items 1-14 of 14
  • Seibold, Petra; Schmezer, Peter; Behrens, Sabine; Michailidou, Kyriaki; Bolla, Manjeet K.; Wang, Qin; Flesch-Janys, Dieter; Nevanlinna, Heli; Fagerholm, Rainer; Aittomaki, Kristiina; Blomqvist, Carl; Margolin, Sara; Mannermaa, Arto; Kataja, Vesa; Kosma, Veli-Matti; Hartikainen, Jaana M.; Lambrechts, Diether; Wildiers, Hans; Kristensen, Vessela; Alnaes, Grethe Grenaker; Nord, Silje; Borresen-Dale, Anne-Lise; Hooning, Maartje J.; Hollestelle, Antoinette; Jager, Agnes; Seynaeve, Caroline; Li, Jingmei; Liu, Jianjun; Humphreys, Keith; Dunning, Alison M.; Rhenius, Valerie; Shah, Mitul; Kabisch, Maria; Torres, Diana; Ulmer, Hans-Ulrich; Hamann, Ute; Schildkraut, Joellen M.; Purrington, Kristen S.; Couch, Fergus J.; Hall, Per; Pharoah, Paul; Easton, Doug F.; Schmidt, Marjanka K.; Chang-Claude, Jenny; Popanda, Odilia (2015)
    Background: Personalized therapy considering clinical and genetic patient characteristics will further improve breast cancer survival. Two widely used treatments, chemotherapy and radiotherapy, can induce oxidative DNA damage and, if not repaired, cell death. Since base excision repair (BER) activity is specific for oxidative DNA damage, we hypothesized that germline genetic variation in this pathway will affect breast cancer-specific survival depending on treatment. Methods: We assessed in 1,408 postmenopausal breast cancer patients from the German MARIE study whether cancer specific survival after adjuvant chemotherapy, anthracycline chemotherapy, and radiotherapy is modulated by 127 Single Nucleotide Polymorphisms (SNPs) in 21 BER genes. For SNPs with interaction terms showing p <0.1 (likelihood ratio test) using multivariable Cox proportional hazard analyses, replication in 6,392 patients from nine studies of the Breast Cancer Association Consortium (BCAC) was performed. Results: rs878156 in PARP2 showed a differential effect by chemotherapy (p = 0.093) and was replicated in BCAC studies (p = 0.009; combined analysis p = 0.002). Compared to non-carriers, carriers of the variant G allele (minor allele frequency = 0.07) showed better survival after chemotherapy (combined allelic hazard ratio (HR) = 0.75, 95 % 0.53-1.07) and poorer survival when not treated with chemotherapy (HR = 1.42, 95 % 1.08-1.85). A similar effect modification by rs878156 was observed for anthracycline-based chemotherapy in both MARIE and BCAC, with improved survival in carriers (combined allelic HR = 0.73, 95 % CI 0.40-1.32). None of the SNPs showed significant differential effects by radiotherapy. Conclusions: Our data suggest for the first time that a SNP in PARP2, rs878156, may together with other genetic variants modulate cancer specific survival in breast cancer patients depending on chemotherapy. These germline SNPs could contribute towards the design of predictive tests for breast cancer patients.
  • Lavoginal, Darja; Samuel, Kulli; Lavrits, Arina; Meltsovl, Alvin; Soritsa, Deniss; Kadastik, Ulle; Peters, Maire; Rinken, Ago; Salumets, Andres (2019)
    Research question: Endometriosis is a common gynaecological disease defined by the presence of endometrium-like tissue outside the uterus. This complex disease, often accompanied by severe pain and infertility, causes a significant medical and socioeconomic burden; hence, novel strategies are being sought for the treatment of endometriosis. Here, we set out to explore the cytotoxic effects of a panel of compounds to find toxins with different efficiency in eutopic versus ectopic cells, thus highlighting alterations in the corresponding molecular pathways. Design: The effect on cellular viability of 14 compounds was established in a cohort of paired eutopic and ectopic endometrial stromal cell samples from 11 patients. The biological targets covered by the panel included pro-survival enzymes, cytoskeleton proteins, the proteasome and the cell repair machinery. Results: Protein kinase inhibitors GSK690693, ARC-775 and sorafenib, proteasome inhibitor bortezomib, and microtubuledepolymerizing toxin monomethyl auristatin E were more effective in eutopic cells. In contrast, 10 mu mol/l of the anthracycline toxin doxorubicin caused cellular death in ectopic cells more effectively than in eutopic cells. The large-scale sequencing of mRNA isolated from doxorubicin-treated and control cells indicated different survival strategies in eutopic versus ectopic endometrium. Conclusions: Overall, the results confirm evidence of large-scale metabolic reprogramming in endometriotic cells, which underlies the observed differences in sensitivity towards toxins. The enhanced efficiency of doxorubicin interfering with redox equilibria and/or DNA repair mechanisms pinpoints key players that can be potentially used to selectively target ectopic lesions in endometriosis.
  • Fleischer, Thomas; Klajic, Jovana; Aure, Miriam Ragle; Louhimo, Riku; Pladsen, Arne V.; Ottestad, Lars; Touleimat, Nizar; Laakso, Marko; Halvorsen, Ann Rita; Alnaes, Grethe I. Grenaker; Riis, Margit L. H.; Helland, Aslaug; Hautaniemi, Sampsa; Lonning, Per Eystein; Naume, Bjorn; Borresen-Dale, Anne-Lise; Tost, Joerg; Kristensen, Vessela N. (2017)
    Breast cancer patients with Luminal A disease generally have a good prognosis, but among this patient group are patients with good prognosis that are currently overtreated with adjuvant chemotherapy, and also patients that have a bad prognosis and should be given more aggressive treatment. There is no available method for subclassification of this patient group. Here we present a DNA methylation signature (SAM40) that segregates Luminal A patients based on prognosis, and identify one good prognosis group and one bad prognosis group. The prognostic impact of SAM40 was validated in four independent patient cohorts. Being able to subdivide the Luminal A patients may give the two-sided benefit of identifying one subgroup that may benefit from a more aggressive treatment than what is given today, and importantly, identifying a subgroup that may benefit from less treatment.
  • Moquin, Alexandre; Ji, Jeff; Neibert, Kevin; Winnik, Francoise M.; Maysinger, Dusica (2018)
    Polymersomes are attractive nanocarriers for hydrophilic and lipophilic drugs; they are more stable than liposomes, tunable, and relatively easy to prepare. The copolymer composition and molar mass are critical features that determine the physicochemical properties of the polymersomes including the rate of drug release. We used the triblockcopolymer, poly(2-methyl-2-oxazoline)-block-poly-(dimethysiloxane)-block-poly(2-methyl-2-oxazoline) (PIVIOXA-PDIVIS-PMOXA), to form amphipathic polymersomes capable of loading proteins and small hydrophobic agents. The selected agents were unstable neurotrophins (nerve growth factor and brain -derived neurotrophic factor), a large protein CD109, and the fluorescent drug curcumin. We prepared, characterized, and tested polymersomes loaded with selected agents in 2D and 3D biological models. Curcumin-loaded and rhodamine-bound PMOXA-PDMS-PMOXA polymersomes were used to visualize them inside cells. NMethyl-D-aspartate receptor (NNIDAR) agonists and antagonists were also covalently attached to the surface of polymersomes for targeting neurons. Labeled and unlabeled polymersomes with or without loaded agents were characterized using dynamic light scattering (DLS), UV-vis fluorescence spectroscopy, and asymmetrical flow field-flow fractionation (AF(4)). Polymersomes were imaged and tested for biological activity in human and murine fibroblasts, murine macrophages, primary murine dorsal root ganglia, and murine hippocampal cultures. Polymersomes were rapidly internalized and there was a clear intracellular co-localization of the fluorescent drug (curcumin) with the fluorescent rhodamine-labeled polymersomes. Polymersomes containing CD109, a glycosylphosphatidylinositol-anchored protein, promoted cell migration in the model of wound healing. Nerve growth factor-loaded polymersomes effectively enhanced neurite outgrowth in dissociated and explanted dorsal root ganglia. Brain -derived neurotrophic factor increased dendritic spine density in serum-deprived hippocampal slice cultures. NMDAR agonist-and antagomst-functionalized polymersomes targeted selectively neurons over filial cells in mixed cultures. Collectively, the study reveals the successful incorporation into polymersomes of biologically active trophic factors and small hydrophilic agents that retain their biological activity in vitro, as demonstrated in selected central and peripheral tissue models.
  • Khoshoei, Azadeh; Ghasemy, Ebrahim; Poustchi, Fatemeh; Shahbazi, Mohammad-Ali; Maleki, Reza (2020)
    Purpose The aim of this study was to introduce a smart and responsive drug carrier for Doxorubicin (DOX) and Paclitaxel (PAX) for desirable therapeutic application. Method Loading and releasing of DOX and PAX from smart and pH-sensitive functionalized single-walled carbon nanotube (SWCNTs) and graphene carriers have been simulated by molecular dynamics. The influences of chitosan polymer on proposed carriers have been studied, and both carriers were functionalized with carboxyl groups to improve the loading and releasing properties of the drugs. Results The results showed that DOX could be well adsorbed on both functionalized SWCNTs and graphene. In contrast, there was a weak electrostatic and Van der Waals interaction between both these drugs and carriers at cancerous tissues, which is highly favorable for cancer therapy. Adding trimethyl chitosan (TMC) polymer to carriers facilitated DOX release at acidic tissues. Furthermore, at blood pH, the PAX loaded on the functionalized SWCNTs carrier represented the highest dispersion of the drug while the DOX-graphene showed the highest concentration of the drug at a point. In addition, the mean-square displacement (MSD) results of PAX-graphene indicated that the PAX could be adsorbed quickly and be released slowly. Finally, functionalized graphene-TMC-PAX is a smart drug system with responsive behavior and controllable drug release, which are essential in cancer therapy. Conclusion Simultaneous application of the carboxyl group and TMC can optimize the pH sensitivity of the SWCNTs and graphene to prepare a novel and smart drug carrier for cancer therapy.
  • Ji, Jianfeng; Ma, Fei; Zhang, Hongbo; Liu, Fengyong; He, Jian; Li, Wanlin; Xie, Tingting; Zhong, Danni; Zhang, Tingting; Tian, Mei; Zhang, Hong; Almeida Santos, Helder; Zhou, Min (2018)
    Triple‐negative breast cancer (TNBC) is a kind of aggressive malignancy with fast metastatic behavior. Herein, a nanosystem loaded with a near‐infrared (NIR) agent is developed to achieve chemo‐photothermal combination therapy for inhibiting tumor growth and metastasis in TNBC. The NIR agent of ultrasmall sized copper sulfide nanodots with strong NIR light‐absorbing capability is entrapped into the doxorubicin‐contained temperature‐sensitive polymer‐based nanosystem by a self‐assembled method. The temperature sensitive nanoclusters (TSNCs) can significantly enhance the drug penetration depth and significantly kill the cancer cells under the near‐infrared laser irradiation. Importantly, it is plausible that the tumor penetrating nanosystem combined with NIR laser irradiation can prevent lung and liver metastasis via extermination of the cancer stem cells. The in vivo characteristics, evaluated by photoacoustic imaging, pharmacokinetics, and biodistribution, confirm their feasibility for tumor treatment owing to their long blood circulation time and high tumor uptake. Thanks to the high tumor uptake and highly potent antitumor efficacy, the doxorubicin‐induced cardiotoxicity can be avoided when the TSNC is used. Taken together, it is believed that the nanosystem has excellent potential for clinical translation.
  • d’Avanzo, Nicola; Torrieri, Giulia; Figueiredo, Patricia; Celia, Christian; Paolino, Donatella; Rebelo Correia, Alexandra Maria; Moslova, Karina; Teesalu, Tambet; Fresta, Massimo; Santos, Hélder A. (2021)
    Breast cancer, with around 2 million new cases in 2019, is the second most common cancer worldwide and the second leading cause of cancer death among females. The aim of this work is to prepare a targeting nanoparticle through the conjugation of LinTT1 peptide, a specific molecule targeting p32 protein overexpressed by breast cancer and cancer associated cells, on liposomes' surface. This approach increases the cytotoxic effects of doxorubicin (DOX) and sorafenib (SRF) co-loaded in therapeutic liposomes on both 2D and 3D breast cancer cellular models. The liposome functionalization leads to a higher interaction with 3D breast cancer spheroids than bare ones. Moreover, interaction studies between LinTT1-functionalized liposomes and M2 primary human macrophages show an internalization of 50% of the total nanovesicles that interact with these cells, while the other 50% results only associated to cell surface. This finding suggests the possibility to use the amount of associated liposomes to enrich the hypoxic tumor area, exploiting the ability of M2 macrophages to accumulate in the central core of tumor mass. These promising results highlight the potential use of DOX and SRF co-loaded LinTT1-functionalized liposomes as nanomedicines for the treatment of breast cancer, especially in triple negative cancer cells.
  • Gao, Yan; Tong, Haibei; Li, Jialiang; Li, Jiachen; Huang, Di; Shi, Jisen; Xia, Bing (2021)
    Nanomedicines have been designed and developed to deliver anticancer drugs or exert anticancer therapy more selectively to tumor sites. Recent investigations have gone beyond delivering drugs to tumor tissues or cells, but to intracellular compartments for amplifying therapy efficacy. Mitochondria are attractive targets for cancer treatment due to their important functions for cells and close relationships to tumor occurrence and metastasis. Accordingly, multifunctional nanoplatforms have been constructed for cancer therapy with the modification of a variety of mitochondriotropic ligands, to trigger the mitochondria-mediated apoptosis of tumor cells. On this basis, various cancer therapeutic modalities based on mitochondria-targeted nanomedicines are developed by strategies of damaging mitochondria DNA (mtDNA), increasing reactive oxygen species (ROS), disturbing respiratory chain and redox balance. Herein, in this review, we highlight mitochondria-targeted cancer therapies enabled by nanoplatforms including chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT) and combined immunotherapy, and discussed the ongoing challenges.
  • Barrenetxea Lekue, Cristina; Grasso Cicala, Silvina; Leppä, Sirpa; Stauffer Larsen, Thomas; Herráez Rodríguez, Susana; Alonso Caballero, Clara; Jørgensen, Judit M.; Toldbod, Helle; Leal Martínez, Irene; D’Amore, Francesco (2019)
    Outcomes for patients with non-Hodgkin’s lymphoma (NHL) that proves refractory to treatment remain poor. Treatment of such patients is individualized and can include enrolment in a clinical trial of novel agents or use of one of a wide array of drug regimens. Initial treatment with anthracyclines such as doxorubicin limits options at later stages of treatment because of anthracycline-related cumulative cardiotoxicity. The aza-anthracenedione pixantrone was developed to reduce the likelihood of cardiotoxicity without compromising efficacy and is currently conditionally approved for use as monotherapy in patients with multiply-relapsed or refractory aggressive B cell NHL. The use of pixantrone in combination therapy, often to replace doxorubicin or mitoxantrone, has or is currently being investigated in numerous studies in patients with aggressive or indolent NHL and is the focus of this review. These include the R-CPOP regimen (rituximab, cyclophosphamide, pixantrone, vincristine, prednisone) for aggressive NHL in the first-line setting, including a study in elderly patients with limited cardiac function, and for patients with relapsed NHL with prior anthracycline exposure; the PSHAP regimen (pixantrone, cytarabine, prednisone, cisplatin), also in the latter setting; the PREBen/PEBen regimen (pixantrone, bendamustine and etoposide with or without rituximab) as salvage therapy; and pixantrone in combination with fludarabine, dexamethasone, and rituximab (FPD-R) for relapsed indolent NHL.
  • Koskinen, Ilmari; Boström, Peter J.; Taimen, P.; Salminen, A.; Tervahartiala, M.; Sairanen, J.; Erickson, A.; Mirtti, T. (2021)
    Purpose To investigate the role of clinical parameters and immunohistochemical (IHC) biomarkers in their feasibility to predict the effect of neo-adjuvant chemotherapy (NAC) in patients with muscle-invasive urothelial bladder cancer (MIBC). Materials and methods The first 76 consecutive patients with MIBC treated with NAC and radical cystectomy in two University hospitals in Finland between 2008 and 2013 were chosen for this study. After excluding patients with non-urothelial cancer, less than two cycles of chemotherapy, no tissue material for IHC analysis or non-muscle-invasive bladder cancer in re-review, 59 patients were included in the final analysis. A tissue microarray block was constructed from the transurethral resection samples and IHC stainings of Ki-67, p53, Her-2 and EGFR were made. The correlations between histological features in transurethral resection samples and immune-histochemical stainings were calculated. The associations of clinicopathological parameters and IHC stainings with NAC response were evaluated. Factors affecting survival were estimated. Results The complete response rate after NAC was 44%. A higher number of chemotherapy cycles was associated with better response to neo-adjuvant chemotherapy. No response to neo-adjuvant chemotherapy and female gender was associated with decreased cancer-specific survival. The IHC stainings used failed to show an association with neo-adjuvant chemotherapy response and overall or cancer specific survival. Conclusions Patients who do not respond to neo-adjuvant chemotherapy do significantly worse than responders. This study could not find clinical tools to distinguish responders from non-responders. Further studies preferably with larger cohorts addressing this issue are warranted to improve the selection of patients for neo-adjuvant chemotherapy.
  • Kickova, Eva; Salmaso, Stefano; Mastrotto, Francesca; Caliceti, Paolo; Urtti, Arto (2021)
    Posterior segment eye diseases are mostly related to retinal pathologies that require pharmacological treatments by invasive intravitreal injections. Reduction of frequent intravitreal administrations may be accomplished with delivery systems that provide sustained drug release. Pullulan-dexamethasone conjugates were developed to achieve prolonged intravitreal drug release. Accordingly, dexamethasone was conjugated to similar to 67 kDa pullulan through hydrazone bond, which was previously found to be slowly cleavable in the vitreous. Dynamic light scattering and transmission electron microscopy showed that the pullulan-dexamethasone containing 1:20 drug/glucose unit molar ratio (10% w/w dexamethasone) self-assembled into nanoparticles of 461 +/- 30 nm and 402 +/- 66 nm, respectively. The particles were fairly stable over 6 weeks in physiological buffer at 4, 25 and 37 degrees C, while in homogenized vitreous at 37 degrees C, the colloidal assemblies underwent size increase over time. The drug was released slowly in the vitreous and rapidly at pH 5.0 mimicking lysosomal conditions: 50% of the drug was released in about 2 weeks in the vitreous, and in 2 days at pH 5.0. In vitro studies with retinal pigment epithelial cell line (ARPE-19) showed no toxicity of the conjugates in the cells. Flow cytometry and confocal microscopy showed cellular association of the nanoparticles and intracellular endosomal localization. Overall, pullulan conjugates showed interesting features that may enable their successful use in intravitreal drug delivery.
  • Harmati, Maria; Gyukity-Sebestyen, Edina; Dobra, Gabriella; Janovak, Laszlo; Dekany, Imre; Saydam, Okay; Hunyadi-Gulyas, Eva; Nagy, Istvan; Farkas, Attila; Pankotai, Tibor; Ujfaludi, Zsuzsanna; Horvath, Peter; Piccinini, Filippo; Kovacs, Maria; Biro, Tamas; Buzas, Krisztina (2019)
    Exosomes are small extracellular vesicles (sEVs), playing a crucial role in the intercellular communication in physiological as well as pathological processes. Here, we aimed to study whether the melanoma-derived sEV-mediated communication could adapt to microenvironmental stresses. We compared B16F1 cell-derived sEVs released under normal and stress conditions, including cytostatic, heat and oxidative stress. The miRNome and proteome showed substantial differences across the sEV groups and bioinformatics analysis of the obtained data by the Ingenuity Pathway Analysis also revealed significant functional differences. The in silico predicted functional alterations of sEVs were validated by in vitro assays. For instance, melanoma-derived sEVs elicited by oxidative stress increased Ki-67 expression of mesenchymal stem cells (MSCs); cytostatic stress-resulted sEVs facilitated melanoma cell migration; all sEV groups supported microtissue generation of MSC-B16F1 co-cultures in a 3D tumour matrix model. Based on this study, we concluded that (i) molecular patterns of tumour-derived sEVs, dictated by the microenvironmental conditions, resulted in specific response patterns in the recipient cells; (ii) in silico analyses could be useful tools to predict different stress responses; (iii) alteration of the sEV-mediated communication of tumour cells might be a therapy-induced host response, with a potential influence on treatment efficacy.
  • Haider, Malik Salman; Luebtow, Michael M.; Endres, Sebastian; Forster, Stefan; Flegler, Vanessa J.; Boettcher, Bettina; Aseyev, Vladimir; Pöppler, Ann-Christin; Luxenhofer, Robert (2020)
    Polymeric micelles are typically characterized as core-shell structures. The hydrophobic core is considered as a depot for hydrophobic molecules, and the corona-forming block acts as a stabilizing and solubilizing interface between the core and aqueous milieu. Tremendous efforts have been made to tune the hydrophobic block to increase the drug loading and stability of micelles, whereas the role of hydrophilic blocks is rarely investigated in this context, with poly(ethylene glycol) (PEG) being the gold standard of hydrophilic polymers. To better understand the role of the hydrophilic corona, a small library of structurally similar A-B-A-type amphiphiles based on poly(2-oxazoline)s and poly(2-oxazine)s is investigated by varying the hydrophilic block A utilizing poly(2-methyl-2-oxazoline) (pMeOx; A) or poly(2-ethyl-2-oxazoline) (pEtOx; A*). In terms of hydrophilicity, both polymers closely resemble PEG. The more hydrophobic block B bears either a poly(2-oxazoline) and poly(2-oxazine) backbone with C3 (propyl) and C4 (butyl) side chains. Surprisingly, major differences in loading capacities from A-B-A > A*-B-A > A*-B-A* is observed for the formulation with two poorly water-soluble compounds, curcumin and paclitaxel, highlighting the importance of the hydrophilic corona of polymer micelles used for drug formulation. The formulations are also characterized by various nuclear magnetic resonance spectroscopy methods, dynamic light scattering, cryogenic transmission electron microscopy, and (micro) differential scanning calorimetry. Our findings suggest that the interaction between the hydrophilic block and the guest molecule should be considered an important, but previously largely ignored, factor for the rational design of polymeric micelles.
  • Khan, Daulat Haleem; Bashir, Sajid; Correia, Alexandra; Khan, Muhammad Imran; Figueiredo, Patricia; Santos, Hélder A.; Peltonen, Leena (2019)
    The aim of the present study was to prepare niosome formulations for the simultaneous encapsulation, dual drug therapy, of two anticancer drugs by the ecological probe sonication method. Poloxamer and sorbitan monostearate were used as surface active agents in niosomes, and the water soluble doxorubicin and poorly-water soluble paclitaxel were used as anticancer drugs. Thorough physicochemical analysis were performed for the niosomes, and their cytotoxicity and activity were evaluated on MCF-7 and PC3-MM2 cancer cell lines. Prepared niosomes were small in size with sizes ranging from 137 nm to 893 nm, and entrapment efficiencies were high, ranging from 91.24% to 99.99%. During the four weeks stability testing, the particle size remained stable. The niosomal formulations showed in vitro sustained drug release profiles for doxorubicin and clearly increased the dissolution rate of poorly water soluble paclitaxel. The incorporation of both the drugs into niosomes improved cell penetration and antiproliferative activity of the drugs PC3-MM2 cell lines. As a conclusion, doxorubicin and paclitaxel loaded niosome formulations resulted in relatively stable, small sized niosomes with improved drug release profiles, low toxicity, better cell penetration and antiproliferative activity. The niosomes showed synergistic effect due to the presence of both drugs, which can overcome multidrug resistance.