Browsing by Subject "DUPLICATION"

Sort by: Order: Results:

Now showing items 1-6 of 6
  • Feng, Shaohong; Stiller, Josefin; Deng, Yuan; Armstrong, Joel; Fang, Qi; Reeve, Andrew Hart; Xie, Duo; Chen, Guangji; Guo, Chunxue; Faircloth, Brant C.; Petersen, Bent; Wang, Zongji; Zhou, Qi; Diekhans, Mark; Chen, Wanjun; Andreu-Sanchez, Sergio; Margaryan, Ashot; Howard, Jason Travis; Parent, Carole; Pacheco, George; Sinding, Mikkel-Holger S.; Puetz, Lara; Cavill, Emily; Ribeiro, Angela M.; Eckhart, Leopold; Fjeldsa, Jon; Hosner, Peter A.; Brumfield, Robb T.; Christidis, Les; Bertelsen, Mads F.; Sicheritz-Ponten, Thomas; Tietze, Dieter Thomas; Robertson, Bruce C.; Song, Gang; Borgia, Gerald; Claramunt, Santiago; Lovette, Irby J.; Cowen, Saul J.; Njoroge, Peter; Dumbacher, John Philip; Ryder, Oliver A.; Fuchs, Jerome; Bunce, Michael; Burt, David W.; Cracraft, Joel; Meng, Guanliang; Hackett, Shannon J.; Ryan, Peter G.; Jønsson, Knud Andreas; Jamieson, Ian G.; da Fonseca, Rute R.; Braun, Edward L.; Houde, Peter; Mirarab, Siavash; Suh, Alexander; Hansson, Bengt; Ponnikas, Suvi; Sigeman, Hanna; Stervander, Martin; Frandsen, Paul B.; van der Zwan, Henriette; van der Sluis, Rencia; Visser, Carina; Balakrishnan, Christopher N.; Clark, Andrew G.; Fitzpatrick, John W.; Bowman, Reed; Chen, Nancy; Cloutier, Alison; Sackton, Timothy B.; Edwards, Scott V.; Foote, Dustin J.; Shakya, Subir B.; Sheldon, Frederick H.; Vignal, Alain; Soares, Andre E. R.; Shapiro, Beth; Gonzalez-Solis, Jacob; Ferrer-Obiol, Joan; Rozas, Julio; Riutort, Marta; Tigano, Anna; Friesen, Vicki; Dalen, Love; Urrutia, Araxi O.; Szekely, Tamas; Liu, Yang; Campana, Michael G.; Corvelo, Andre; Fleischer, Robert C.; Rutherford, Kim M.; Gemmell, Neil J.; Dussex, Nicolas; Mouritsen, Henrik; Thiele, Nadine; Delmore, Kira; Liedvogel, Miriam; Franke, Andre; Hoeppner, Marc P.; Krone, Oliver; Fudickar, Adam M.; Mila, Borja; Ketterson, Ellen D.; Fidler, Andrew Eric; Friis, Guillermo; Parody-Merino, Angela M.; Battley, Phil F.; Cox, Murray P.; Lima, Nicholas Costa Barroso; Prosdocimi, Francisco; Parchman, Thomas Lee; Schlinger, Barney A.; Loiselle, Bette A.; Blake, John G.; Lim, Haw Chuan; Day, Lainy B.; Fuxjager, Matthew J.; Baldwin, Maude W.; Braun, Michael J.; Wirthlin, Morgan; Dikow, Rebecca B.; Ryder, T. Brandt; Camenisch, Glauco; Keller, Lukas F.; DaCosta, Jeffrey M.; Hauber, Mark E.; Louder, Matthew I. M.; Witt, Christopher C.; McGuire, Jimmy A.; Mudge, Joann; Megna, Libby C.; Carling, Matthew D.; Wang, Biao; Taylor, Scott A.; Del-Rio, Glaucia; Aleixo, Alexandre; Vasconcelos, Ana Tereza Ribeiro; Mello, Claudio V.; Weir, Jason T.; Haussler, David; Li, Qiye; Yang, Huanming; Wang, Jian; Lei, Fumin; Rahbek, Carsten; Gilbert, M. Thomas P.; Graves, Gary R.; Jarvis, Erich D.; Paten, Benedict; Zhang, Guojie (2020)
    Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity(1-4). Sparse taxon sampling has previously been proposed to confound phylogenetic inference(5), and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species. A dataset of the genomes of 363 species from the Bird 10,000 Genomes Project shows increased power to detect shared and lineage-specific variation, demonstrating the importance of phylogenetically diverse taxon sampling in whole-genome sequencing.
  • Huang, Bin; Huang, Zhinuo; Ma, Ruifang; Ramakrishnan, Muthusamy; Chen, Jialu; Zhang, Zhijun; Yrjälä, Kim (2021)
    Background Moso bamboo, the fastest growing plant on earth, is an important source for income in large areas of Asia, mainly cultivated in China. Lateral organ boundaries domain (LBD) proteins, a family of transcription factors unique to plants, are involved in multiple transcriptional regulatory pathways and play important roles in lateral organ development, pathogen response, secondary growth, and hormone response. The LBD gene family has not previously been characterized in moso bamboo (Phyllostachys edulis). Results In this study, we identified 55 members of the LBD gene family from moso bamboo and found that they were distributed non-uniformly across its 18 chromosomes. Phylogenetic analysis showed that the moso bamboo LBD genes could be divided into two classes. LBDs from the same class share relatively conserved gene structures and sequences encoding similar amino acids. A large number of hormone response-associated cis-regulatory elements were identified in the LBD upstream promoter sequences. Synteny analysis indicated that LBDs in the moso bamboo genome showed greater collinearity with those of O. sativa (rice) and Zea mays (maize) than with those of Arabidopsis and Capsicum annuum (pepper). Numerous segmental duplicates were found in the moso bamboo LBD gene family. Gene expression profiles in four tissues showed that the LBD genes had different spatial expression patterns. qRT-PCR assays with the Short Time-series Expression Miner (STEM) temporal expression analysis demonstrated that six genes (PeLBD20, PeLBD29, PeLBD46, PeLBD10, PeLBD38, and PeLBD06) were consistently up-regulated during the rapid growth and development of bamboo shoots. In addition, 248 candidate target genes that function in a variety of pathways were identified based on consensus LBD binding motifs. Conclusions In the current study, we identified 55 members of the moso bamboo transcription factor LBD and characterized for the first time. Based on the short-time sequence expression software and RNA-seq data, the PeLBD gene expression was analyzed. We also investigated the functional annotation of all PeLBDs, including PPI network, GO, and KEGG enrichment based on String database. These results provide a theoretical basis and candidate genes for studying the molecular breeding mechanism of rapid growth of moso bamboo.
  • Vaattovaara, Aleksia Fanni Maria; Leppälä, Johanna Maria; Salojärvi, Jarkko Tapani; Wrzaczek, Michael Alois (2019)
    The use of draft genomes of different species and re-sequencing of accessions and populations are now a common tool for plant biology research. The de novo assembled draft genomes make it possible to identify pivotal divergence points in the plant lineage and provide an opportunity to investigate the genomic basis and timing of biological innovations by inferring orthologs between species. Furthermore, re-sequencing facilitates the mapping and subsequent molecular characterization of causative loci for traits including plant stress tolerance or development. In both cases high quality gene annotation, the identification of protein-coding regions, gene promoters and 5’ and 3’ untranslated regions, is critical for investigation of gene function. Annotations are constantly improving but automated gene annotations still require manual curation and experimental validation. This is particularly important for genes with large introns, genes located in regions rich with transposable elements or repeats, large gene families and segmentally duplicated genes. In this opinion paper we highlight the impact of annotation quality on evolutionary analyses, genome-wide association studies and the identification of orthologous genes in plants. Furthermore, we predict that incorporating the accurate information from manual curation into databases will dramatically improve the performance of automated gene predictors.
  • Kokkonen, Hannaleena; Siren, Auli; Määttä, Tuomo; Kamila Kadlubowska, Magda; Acharya, Anushree; Nouel-Saied, Liz M.; Leal, Suzanne M.; Jarvela, Irma; Schrauwen, Isabelle (2021)
    Background: Microduplications are a rare cause of disease in X-linked neurodevelopmental disorders but likely have been under reported due challenges in detection and interpretation. Methods: We performed exome sequencing and subsequent microarray analysis in two families with a neurodevelopmental disorder. Results: Here, we report on two families each with unique inherited microduplications at Xp21.2 and Xq13.1, respectively. In the first family, a 562.8-kb duplication at Xq13.1 covering DLG3, TEX11, SLC7A3, GDPD2, and part KIF4A was identified in a boy whose phenotype was characterized by delayed speech development, mild intellectual disability (ID), mild dysmorphic facial features, a heart defect, and neuropsychiatric symptoms. By interrogating all reported Xq13.1 duplications in individuals affected with a neurodevelopmental disorder, we provide evidence that this genomic region and particularly DLG3 might be sensitive to an increased dosage. In the second family with four affected males, we found a noncontinuous 223- and 204-kb duplication at Xp21.2, of which the first duplication covers exon 6 of IL1RAPL1. The phenotype of the male patients was characterized by delayed speech development, mild to moderate ID, strabismus, and neurobehavioral symptoms. The carrier daughter and her mother had learning difficulties. IL1RAPL1 shows nonrecurrent causal structural variation and is located at a common fragile site (FRAXC), prone to re-arrangement. Conclusion: In conclusion, we show that comprehensive clinical and genetic examination of microduplications on the X-chromosome can be helpful in undiagnosed cases of neurodevelopmental disease.
  • Visuri, Sofia; Jahnukainen, Timo; Taskinen, Seppo (2018)
    Purpose: To evaluate the risk of urinary tract infections (UTIs) in infants with prenatally detected complicated duplex collecting system (CDS) or ureterocele. Materials and methods: All patients with prenatally detected CDS (n= 34) or single system ureterocele (n= 7) who were admitted to our institution between 2003 and 2013 were enrolled in this retrospective analysis. Duplex collecting systems with ureterocele (n = 13), vesicoureteral reflux (VUR) (n = 20) or nonrefluxing megaureter without ureterocele (n = 7) were determined as complicated. Twenty-six (63%) patients were females. The prevalence of UTI was compared to 66 controls. Results: The median follow-up time was 5.5 (1.7-12.2) years. Eighteen (44%) patients and 3 (5%) controls had at least one UTI (p <0.001) at themedian age of 0.8 and 0.4 years, respectively (p= 0.481). Fifty-seven percent of the UTIs were breakthrough infections and 82% of those were non-Escherichia coli infections. UTIs occurred prior to any surgical intervention in 4/13 (31%) patients with ureterocele, in 2/14 (14%) patientswith VUR, in 4/7 (57%) patients with both ureterocele and VUR, and in 3/7 (43%) patientswith nonrefluxingmegaureterwithout VUR or ureterocele (p-values 0.012, 0.209, 0.001 and 0.010, respectively, compared to controls). Postoperative UTIswere observed in 29% of the girls and in none of the 11 boys (p = 0.072). The incidence of UTI after perforation of ureterocele was only 14%. Conclusions: Children with prenatally detected ureterocele or duplex collecting system associated with nonrefluxing megaureter are at high risk of UTI despite prophylactic antibiotics. In case of prenatally detected ureterocele we suggest to consider early endoscopic perforation. Level of evidence: III. (c) 2017 Elsevier Inc. All rights reserved.
  • Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K. (2016)
    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.