Browsing by Subject "DYSKERATOSIS-CONGENITA"

Sort by: Order: Results:

Now showing items 1-2 of 2
  • Kostjukovits, Svetlana; Degerman, Sofie; Pekkinen, Minna; Klemetti, Paula; Landfors, Mattias; Roos, Goran; Taskinen, Mervi; Makitie, Outi (2017)
    Background Cartilage-hair hypoplasia (CHH) is an autosomal recessive chondrodysplasia caused by RMRP (RNA component of mitochondrial RNA processing endoribonuclease) gene mutations. Manifestations include short stature, variable immunodeficiency, anaemia and increased risk of malignancies, all of which have been described also in telomere biology disorders. RMRP interacts with the telomerase RT (TERT) subunit, but the influence of RMRP mutations on telomere length is unknown. We measured relative telomere length (RTL) in patients with CHH, their first-degree relatives and healthy controls and correlated RTL with clinical and laboratory features. Methods The study cohort included 48 patients with CHH with homozygous (n=36) or compound heterozygous RMRP mutations (median age 38.2 years, range 6.0-70.8 years), 86 relatives (74 with a heterozygous RMRP mutation) and 94 unrelated healthy controls. We extracted DNA from peripheral blood, sequenced the RMRP gene and measured RTL by qPCR. Results Compared with age-matched and sex-matched healthy controls, median RTL was significantly shorter in patients with CHH (n=40 pairs, 1.05 vs 1.21, p=0.017), but not in mutation carriers (n=48 pairs, 1.16 vs 1.10, p=0.224). RTL correlated significantly with age in RMRP mutation carriers (r=-0.482, p <0.001) and non-carriers (r=-0.498, p Conclusions Telomere length was decreased in children with CHH. We found no correlation between RTL and clinical or laboratory parameters.
  • Trotta, Luca; Norberg, Anna; Taskinen, Mervi; Beziat, Vivien; Degerman, Sofie; Wartiovaara-Kautto, Ulla; Välimaa, Hannamari; Jahnukainen, Kirsi; Casanova, Jean-Laurent; Seppänen, Mikko; Saarela, Janna; Koskenvuo, Minna; Martelius, Timi (2018)
    Background: The telomere biology disorders (TBDs) include a range of multisystem diseases characterized by mucocutaneous symptoms and bone marrow failure. In dyskeratosis congenita (DKQ, the clinical features of TBDs stem from the depletion of crucial stem cell populations in highly proliferative tissues, resulting from abnormal telomerase function. Due to the wide spectrum of clinical presentations and lack of a conclusive laboratory test it may be challenging to reach a clinical diagnosis, especially if patients lack the pathognomonic clinical features of TBDs. Methods: Clinical sequencing was performed on a cohort of patients presenting with variable immune phenotypes lacking molecular diagnoses. Hypothesis-free whole-exome sequencing (WES) was selected in the absence of compelling diagnostic hints in patients with variable immunological and haematological conditions. Results: In four patients belonging to three families, we have detected five novel variants in known TBD-causing genes (DKC1, TERT and RTEL1). In addition to the molecular findings, they all presented shortened blood cell telomeres. These findings are consistent with the displayed TBD phenotypes, addressing towards the molecular diagnosis and subsequent clinical follow-up of the patients. Conclusions: Our results strongly support the utility of WES-based approaches for routine genetic diagnostics of TBD patients with heterogeneous or atypical clinical presentation who otherwise might remain undiagnosed.