Browsing by Subject "Daphnia"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Gerber, Nina; Kokko, Hanna; Ebert, Dieter; Booksmythe, Isobel (2018)
    The timing of sex in facultatively sexual organisms is critical to fitness, due to the differing demographic consequences of sexual versus asexual reproduction. In addition to the costs of sex itself, an association of sex with the production of dormant life stages also influences the optimal use of sex, especially in environments where resting eggs are essential to survive unfavourable conditions. Here we document population dynamics and the occurrence of sexual reproduction in natural populations of Daphnia magna across their growing season. The frequency of sexually reproducing females and males increased with population density and with decreasing asexual clutch sizes. The frequency of sexually reproducing females additionally increased as population growth rates decreased. Consistent with population dynamic models showing that the opportunity cost of sexual reproduction (foregoing contribution to current population growth) diminishes as populations approach carrying capacity, we found that investment in sexual reproduction was highest when asexual population growth was low or negative. Our results support the idea that the timing of sex is linked with periods when the relative cost of sex is reduced due to low potential asexual growth at high population densities. Thus, a combination of ecological and demographic factors affect the optimal timing of sexual reproduction, allowing D. magna to balance the necessity of sex against its costs.
  • Angst, Pascal; Ameline, Camille; Haag, Christoph R.; Ben-Ami, Frida; Ebert, Dieter; Fields, Peter D. (2022)
    The dynamics of extinction and (re)colonization in habitat patches are characterizing features of dynamic metapopulations, causing them to evolve differently than large, stable populations. The propagule model, which assumes genetic bottlenecks during colonization, posits that newly founded subpopulations have low genetic diversity and are genetically highly differentiated from each other. Immigration may then increase diversity and decrease differentiation between subpopulations. Thus, older and/or less isolated subpopulations are expected to have higher genetic diversity and less genetic differentiation. We tested this theory using whole-genome pool-sequencing to characterize nucleotide diversity and differentiation in 60 subpopulations of a natural metapopulation of the cyclical parthenogen Daphnia magna. For comparison, we characterized diversity in a single, large, and stable D. magna population. We found reduced (synonymous) genomic diversity, a proxy for effective population size, weak purifying selection, and low rates of adaptive evolution in the metapopulation compared with the large, stable population. These differences suggest that genetic bottlenecks during colonization reduce effective population sizes, which leads to strong genetic drift and reduced selection efficacy in the metapopulation. Consistent with the propagule model, we found lower diversity and increased differentiation in younger and also in more isolated subpopulations. Our study sheds light on the genomic consequences of extinction-(re)colonization dynamics to an unprecedented degree, giving strong support for the propagule model. We demonstrate that the metapopulation evolves differently from a large, stable population and that evolution is largely driven by genetic drift.
  • Taipale, S. J.; Kuoppamaki, K.; Strandberg, U.; Peltomaa, E.; Vuorio, K. (2020)
    Food quality is one of the key factors influencing zooplankton population dynamics. Eutrophication drives phytoplankton communities toward the dominance of cyanobacteria, which means a decrease in the availability of sterols and long-chain polyunsaturated fatty acids (EPA and DHA). The effects of different restoration measures on the nutritional quality of the phytoplankton community and subsequent impacts on zooplankton biomass have rarely been considered. We analyzed the nutritional quality of phytoplankton in the eutrophic Lake Vesijarvi in southern Finland over a 37-year period, and studied the impacts of two restoration measures, biomanipulation and hypolimnetic aeration, on the abundance of high-quality phytoplankton. We found that biomanipulation had a positive impact on the abundance of taxa synthesizing sterols, EPA, and DHA and, concurrently, on the biomass of the keystone speciesDaphnia. In contrast, hypolimnetic aeration did not result in such a beneficial outcome, manifested as a decrease in the abundance ofDaphniaand frequent phytoplankton blooms dominated by cyanobacteria suggesting reduction in the nutritional quality of food forDaphnia. Our analysis shows that the determination of the nutritional value of algae and the contribution of essential fatty acids and sterols is an effective method to evaluate the success of various restoration measures.
  • Hebert, Marie-Pier; Symons, Celia C.; Canedo-Arguelles, Miguel; Arnott, Shelley E.; Derry, Alison M.; Fugere, Vincent; Hintz, William D.; Melles, Stephanie J.; Astorg, Louis; Baker, Henry K.; Brentrup, Jennifer A.; Downing, Amy L.; Ersoy, Zeynep; Espinosa, Carmen; Franceschini, Jaclyn M.; Giorgio, Angelina T.; Göbeler, Norman; Gray, Derek K.; Greco, Danielle; Hassal, Emily; Huynh, Mercedes; Hylander, Samuel; Jonasen, Kacie L.; Kirkwood, Andrea; Langenheder, Silke; Langvall, Ola; Laudon, Hjalmar; Lind, Lovisa; Lundgren, Maria; McClymont, Alexandra; Proia, Lorenzo; Relyea, Rick A.; Rusak, James A.; Schuler, Matthew S.; Searle, Catherine L.; Shurin, Jonathan B.; Steiner, Christopher F.; Striebel, Maren; Thibodeau, Simon; Cordero, Pablo Urrutia; Vendrell-Puigmitja, Lidia; Weyhenmeyer, Gesa A.; Beisner, Beatrix E. (2023)
    Human-induced salinization increasingly threatens inland waters; yet we know little about the multifaceted response of lake communities to salt contamination. By conducting a coordinated mesocosm experiment of lake salinization across 16 sites in North America and Europe, we quantified the response of zooplankton abundance and (taxonomic and functional) community structure to a broad gradient of environmentally relevant chloride concentrations, ranging from 4 to ca. 1400 mg Cl- L-1. We found that crustaceans were distinctly more sensitive to elevated chloride than rotifers; yet, rotifers did not show compensatory abundance increases in response to crustacean declines. For crustaceans, our among-site comparisons indicate: (1) highly consistent decreases in abundance and taxon richness with salinity; (2) widespread chloride sensitivity across major taxonomic groups (Cladocera, Cyclopoida, and Calanoida); and (3) weaker loss of functional than taxonomic diversity. Overall, our study demonstrates that aggregate properties of zooplankton communities can be adversely affected at chloride concentrations relevant to anthropogenic salinization in lakes.
  • Lohr, Jennifer N.; Haag, Christoph R. (2020)
    Asexual species are thought to suffer more from coevolving parasites than related sexuals. Yet a variety of studies do not find the patterns predicted by theory. Here, to shine light on this conundrum, we investigate one such case of an asexual advantage in the presence of parasites. We follow the frequency dynamics of sexual and asexualDaphnia pulexin a natural pond that was initially dominated by sexuals. Coinciding with an epidemic of a microsporidian parasite infecting both sexuals and asexuals, the pond was rapidly taken over by the initially rare asexuals. With experiments comparing multiple sexual and asexual clones from across the local metapopulation, we confirm that asexuals are less susceptible and also suffer less from the parasite once infected. These results are consistent with the parasite-driven, ecological replacement of dominant sexuals by closely related, but more resistant asexuals, ultimately leading to the extinction of the formerly superior sexual competitor. Our study is one of the clearest examples from nature, backed up by experimental verification, showing a parasite-mediated reversal of competition dynamics. The experiments show that, across the metapopulation, asexuals have an advantage in the presence of parasites. In this metapopulation, asexuals are relatively rare, likely due to their recent invasion. While we cannot rule out other reasons for the observed patterns, the results are consistent with a temporary parasite-mediated advantage of asexuals due to the fact that they are rare, which is an underappreciated aspect of the Red Queen Hypothesis.