Browsing by Subject "Denitrification"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Aalto, Sanni L.; Asmala, Eero; Jilbert, Tom; Hietanen, Susanna (2021)
    Coastal environments are nitrogen (N) removal hot spots, which regulate the amount of land-derived N reaching the open sea. However, mixing between freshwater and seawater creates gradients of inorganic N and bioavailable organic matter, which affect N cycling. In this study, we compare nitrate reduction processes between estuary and offshore archipelago environments in the coastal Baltic Sea. Denitrification rates were similar in both environments, despite lower nitrate and carbon concentrations in the offshore archipelago. However, DNRA (dissimilatory nitrate reduction to ammonium) rates were higher at the offshore archipelago stations, with a higher proportion of autochthonous carbon. The production rate and concentrations of the greenhouse gas nitrous oxide (N2O) were higher in the estuary, where nitrate concentrations and allochthonous carbon inputs are higher. These results indicate that the ratio between nitrate and autochthonous organic carbon governs the balance between N-removing denitrification and N-recycling DNRA, as well as the end-product of denitrification. As a result, a significant amount of the N removed in the estuary is released as N2O, while the offshore archipelago areas are characterized by efficient internal recycling of N. Our results challenge the current understanding of the role of these regions as filters of land-to-sea transfer of N.
  • Aalto, Sanni L.; Saarenheimo, Jatta; Arvola, Lauri; Tiirola, Marja; Huotari, Jussi; Rissanen, Antti (2019)
    Streams have an important role in regulating nitrogen (N) transportation from terrestrial ecosystems to downstream waters. Here, we examined how catchment land-use affects potential denitrification rates and the function and composition of denitrifier communities in boreal stream sediments, using stable isotope incubations and qPCR and 454-pyrosequencing targeted on nirS, nirK and nosZ genes. Although land-use influenced the water chemistry as higher nitrite+nitrate (NOx)-concentration at the agriculture-affected sampling point, sediment organic matter content was found to be the key factor in regulating potential denitrification rates. However, the abundance as well as the diversity and community composition of denitrifying microbes, and genetic N2O production potential (the ratio between nirS+nirK and nosZ gene abundances) were connected to both NOx- and sediment quality. Overall, our results suggest that catchment land-use-driven changes in N and carbon availability affect the denitrification rates, and possibly N-2:N2O production ratio, in boreal streams, through altering denitrifier abundance and community composition.
  • Holmroos, Heidi; Horppila, Jukka; Niemistö, Juha; Nurminen, Leena; Hietanen, Susanna (2015)
    Seasonally changing mechanisms affect the concentrations of dissolved inorganic nitrogen and soluble reactive phosphorus, which differ between the stands of different macrophyte life forms and open water in a eutrophic lake. Macrophytes that take nutrients up for their growth also shelter sediments from resuspension that brings nutrients back to the water and affect denitrification, which removes nitrogen from the water ecosystem. In this study the changes in nutrient concentrations were observed during the open-water period from April to November, and also denitrification rates were measured at different phases of the open-water season. The study was conducted at a shallow eutrophic lake where the effect of macrophytes on water quality is remarkable. The concentration changes of different nitrogen forms during the summer were very similar at the open-water and floating-leaved macrophyte (Nuphar lutea L.) stations. Nitrate was depleted faster among the submerged macrophytes (Myriophyllum verticillatum L.) than among floating-leaved plants or in open water. The decrease in the concentration of nitrate was so significant during the summer that it also affected the total nitrogen concentration in the water. Denitrification was highest in sediments among floating-leaved macrophytes (average 4.3 mg N m(-2) d(-1)) and lowest in sediments of submerged plants (average 1.5 mg N m(-2) d(-1)). Denitrification among submerged macrophytes was limited by low nitrate availability.
  • Xu, Chang; Wong, Vanessa N. L.; Tuovinen, Anna; Simojoki, Asko (2023)
    In acid sulfate (AS) soils, organic rich topsoil and subsoil horizons with highly variable acidity and moisture conditions and interconnected reactions of sulfur and nitrogen make them potential sources of greenhouse gases (GHGs). Subsoil liming can reduce the acidification of sulfidic subsoils in the field. However, the mitigation of GHG production in AS subsoils by liming, and the mechanisms involved, are still poorly known. We limed samples from different horizons of AS and non-AS soils to study the effects of liming on the N2O and CO2 production during a 56-day oxic and subsequent 72-h anoxic incubation. Liming to pH >= 7 decreased oxic N2O production by 97-98 % in the Ap1 horizon, 38-50 % in the Bg1 horizon, and 34-36 % in the BC horizon, but increased it by 136-208 % in the C horizon, respectively. Liming decreased anoxic N2O production by 86-94 % and 78-91 % in Ap1 and Bg1 horizons, but increased it by 100-500 % and 50-162 % in BC and C horizons, respectively. Liming decreased N2O/(N2O + N2) in anoxic denitrification in most horizons of both AS and non-AS soils. Liming significantly increased the cumulative oxic and anoxic CO2 production in AS soil, but less so in non-AS soil due to the initial high soil pH. Higher carbon and nitrogen contents in AS soil com-pared to non-AS soil agreed with the respectively higher cumulative oxic N2O production in all horizons, and the higher CO2 production in the subsoil horizons of all lime treatments. Overall, liming reduced the proportion of N2O in the GHGs produced in most soil horizons under oxic and anoxic conditions but reduced the total GHG production (as CO2 equivalents) only in the Ap1 horizon of both soils. The results suggest that liming of subsoils may not always effectively mitigate GHG emissions due to concurrently increased CO2 production and denitrification.
  • Mäkelä, Minna; Kabir, Kazi Md. Jahangir; Kanerva, Sanna; Yli-Halla, Markku; Simojoki, Asko (2022)
    Factors limiting the production of the greenhouse gases nitrous oxide (N2O) and carbon dioxide (CO2) were investigated in three incubation experiments conducted with soil from top- and subsoil horizons of a peatland which had an acid sulphate mineral subsoil derived from black schists. The effect of moisture was investigated by equilibrating undisturbed soil samples from three horizons (H-2, Cg and Cr) at -10, -60 or -100 cm matric potential and measuring the gas production. In the second experiment, the effects of temperature and various substrates were studied by incubating disturbed soil samples in aerobic conditions at 5 or 20 degrees C, and measuring basal respiration and N2O production before and after adding water, glucose or ammonium into the soil. In the third experiment, the effects of added glucose and/or nitrate on the denitrification in soil samples from four horizons (H1, H2, Cg and Cr were investigated by acetylene inhibition and monitoring of N2O production during a 48-h anaerobic incubation. The production of CO2 in the topmost peat horizon was largest at -10 cm matric potential, and it was larger than those in the mineral subsoil also at -60 and -100 cm potentials. In contrast, drainage seemed to increase N2O production, whereas in the wettest condition the production of N2O in the mineral subsoil was small and the peat horizon was a sink of N2O. Lowering of temperature (from 20 degrees C to 5 degrees C) decreased CO2 production, as expected, but it had almost no role in the production of N2O in aerobic conditions. Glucose addition increased the aerobic production of CO2 in peat, but it had a minor effect in the mineral horizons. Lack of C source (glucose) was limiting anaerobic N2O production in the uppermost peat horizon, while in all other horizons, nitrate proved to be the most limiting factor. It is concluded that peatlands with black schist derived acid sulphate subsoil horizons, such as in this study, have high microbial activity in the peaty topsoil horizons but little microbial activity in the mineral subsoil. These findings are contrary to previous results obtained in sediment-derived acid sulphate soils.
  • Pessi, Igor S.; Viitamäki, Sirja; Virkkala, Anna-Maria; Eronen-Rasimus, Eeva; Delmont, Tom O.; Marushchak, Maija E.; Luoto, Miska; Hultman, Jenni (2022)
    Background In contrast to earlier assumptions, there is now mounting evidence for the role of tundra soils as important sources of the greenhouse gas nitrous oxide (N2O). However, the microorganisms involved in the cycling of N2O in this system remain largely uncharacterized. Since tundra soils are variable sources and sinks of N2O, we aimed at investigating differences in community structure across different soil ecosystems in the tundra. Results We analysed 1.4 Tb of metagenomic data from soils in northern Finland covering a range of ecosystems from dry upland soils to water-logged fens and obtained 796 manually binned and curated metagenome-assembled genomes (MAGs). We then searched for MAGs harbouring genes involved in denitrification, an important process driving N2O emissions. Communities of potential denitrifiers were dominated by microorganisms with truncated denitrification pathways (i.e., lacking one or more denitrification genes) and differed across soil ecosystems. Upland soils showed a strong N2O sink potential and were dominated by members of the Alphaproteobacteria such as Bradyrhizobium and Reyranella. Fens, which had in general net-zero N2O fluxes, had a high abundance of poorly characterized taxa affiliated with the Chloroflexota lineage Ellin6529 and the Acidobacteriota subdivision Gp23. Conclusions By coupling an in-depth characterization of microbial communities with in situ measurements of N2O fluxes, our results suggest that the observed spatial patterns of N2O fluxes in the tundra are related to differences in the composition of denitrifier communities.
  • Uusheimo, Sari Anneli; Tulonen, Tiina Valpuri; Aalto, Sanni L.; Arvola, Lauri Matti Juhani (2018)
    Constructed agricultural ponds and wetlands can reduce nitrogen loading from agriculture especially in areas where warm climate predominates. However, in cold climate temperature-dependency of microbiological processes have raised the question about the applicability of constructed wetlands in N removal. We measured in situ denitrification rates in a constructed agricultural pond using N-15-isotope pairing technique at ambient light and temperature throughout a year as well as diurnally. The field IPT measurements were combined with a wide set of potentially important explanatory data, including air temperature, photosynthetically active radiation, precipitation, discharge, nitrate plus other water quality variables, sediment temperature, oxygen concentration and penetration depth, diffusive oxygen uptake and sediment organic carbon. Denitrification varied, on average, diurnally between 12 and 314 mu mol N m(-2) h(-1) and seasonally between 0 and 12409 mu mol m(-2) h(-1). Light and oxygen regulated the diel variation of denitrification, but seasonally denitrification was governed by a combination of temperature, oxygen and turbidity. The results indicated that the real N removal rate might be 30-35% higher than the measured daytime rates, suggesting that neglecting the diel variation of denitrification we may underestimate N removal capacity of shallow sediments. We conclude, that by following recommended wetland:catchment - size ratios, boreal agricultural ponds can efficiently remove nitrogen by denitrification in summer and in autumn, while in winter and in spring the contribution of denitrification might be negligible relative to the loading, especially with short residence time.