Sundholm, Dage; Rabaa, Hassan; Chiheb, Mohammed; Balch, Alan L.
(2019)
Calculations have been performed at the MP2 and DFT levels for investigating the reasons for the difficulties in synthesizing bis(isocyanide)gold(I) halide complexes. Three-coordinated gold(I) complexes of the type (R3P)(2)(AuX)-X-I (1) can be synthesized, whereas the analogous isocyanide complexes (RNC)(2)(AuX)-X-I (2) are not experimentally known. The molecular structures of (R3P)(2)(AuX)-X-I (X = Cl, Br, and I) and (RNC)(2)(AuX)-X-I with X = halide, cyanide, nitrite, methylthiolate, and thiocyanate are compared and structural differences are discussed. Calculations of molecular properties elucidate which factors determine the strength of the gold-ligand interactions in (RNC)(2)(AuX)-X-I. The linear bonding mode of RNC favors a T-shaped geometry instead of the planar Y-shaped trigonal structure of (R3P)(2)(AuX)-X-I complexes that have been synthesized. An increased polarity of the Au-X bond in 2 leads to destabilization of the Y-shaped structure. Chalcogen-containing ligands or cyanide appear to be good X-ligand candidates for synthesis of (RNC)(2)(AuX)-X-I complexes.