Browsing by Subject "EARTHS BOW SHOCK"

Sort by: Order: Results:

Now showing items 1-9 of 9
  • Plaschke, F.; Hietala, H.; Angelopoulos, V. (2013)
  • Blanco-Cano, Xochitl; Battarbee, Markus; Turc, Lucile; Dimmock, Andrew P.; Kilpua, Emilia K. J.; Hoilijoki, Sanni; Ganse, Urs; Sibeck, David G.; Cassak, Paul A.; Fear, Robert C.; Järvinen, Riku; Juusola, Liisa; Pfau-Kempf, Yann; Vainio, Rami; Palmroth, Minna (2018)
    In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.
  • Wilson, Lynn B.; Chen, Li-Jen; Wang, Shan; Schwartz, Steven J.; Turner, Drew L.; Stevens, Michael L.; Kasper, Justin C.; Osmane, Adnane; Caprioli, Damiano; Bale, Stuart D.; Pulupa, Marc P.; Salem, Chadi S.; Goodrich, Katherine A. (2020)
    An analysis of model fit results of 15,210 electron velocity distribution functions (VDFs), observed within 2 hr of 52 interplanetary (IP) shocks by the Wind spacecraft near 1 au, is presented as the third and final part on electron VDFs near IP shocks. The core electrons and protons dominate in the magnitude and change in the partial-to-total thermal pressure ratio, with the core electrons often gaining as much or more than the protons. Only a moderate positive correlation is observed between the electron temperature and the kinetic energy change across the shock, while weaker, if any, correlations were found with any other macroscopic shock parameter. No VDF parameter correlated with the shock normal angle. The electron VDF evolves from a narrowly peaked core with flaring suprathermal tails in the upstream to either a slightly hotter core with steeper tails or much hotter flattop core with even steeper tails downstream of the weaker and strongest shocks, respectively. Both quasi-static and fluctuating fields are examined as possible mechanisms modifying the VDF, but neither is sufficient alone. For instance, flattop VDFs can be generated by nonlinear ion acoustic wave stochastic acceleration (i.e., inelastic collisions), while other work suggested they result from the combination of quasi-static and fluctuating fields. This three-part study shows that not only are these systems not thermodynamic in nature; even kinetic models may require modification to include things like inelastic collision operators to properly model electron VDF evolution across shocks or in the solar wind.
  • Pfau-Kempf, Yann; Hietala, Heli; Milan, Steve E.; Juusola, Liisa; Hoilijoki, Sanni; Ganse, Urs; von Alfthan, Sebastian; Palmroth, Minna (2016)
    We present a scenario resulting in time-dependent behaviour of the bow shock and transient, local ion reflection under unchanging solar wind conditions. Dayside magnetopause reconnection produces flux transfer events driving fast-mode wave fronts in the magnetosheath. These fronts push out the bow shock surface due to their increased downstream pressure. The resulting bow shock deformations lead to a configuration favourable to localized ion reflection and thus the formation of transient, travelling foreshock-like field-aligned ion beams. This is identified in two-dimensional global magnetospheric hybrid-Vlasov simulations of the Earth's magnetosphere performed using the Vlasiator model (http://vlasiator.fmi.fi). We also present observational data showing the occurrence of dayside reconnection and flux transfer events at the same time as Geotail observations of transient foreshock-like field-aligned ion beams. The spacecraft is located well upstream of the fore-shock edge and the bow shock, during a steady southward interplanetary magnetic field and in the absence of any solar wind or interplanetary magnetic field perturbations. This indicates the formation of such localized ion foreshocks.
  • Turc, L.; Ganse, U.; Pfau-Kempf, Y.; Hoilijoki, S.; Battarbee, M.; Juusola, L.; Järvinen, R.; Brito, T.; Grandin, M.; Palmroth, M. (2018)
    In this paper, we present a detailed study of the effects of the interplanetary magnetic field (IMF) strength on the foreshock properties at small and large scales. Two simulation runs performed with the hybrid-Vlasov code Vlasiator with identical setup but with different IMF strengths, namely, 5 and 10 nT, are compared. We find that the bow shock position and shape are roughly identical in both runs, due to the quasi-radial IMF orientation, in agreement with previous magnetohydrodynamic simulations and theory. Foreshock waves develop in a broader region in the higher IMF strength run, which we attribute to the larger growth rate of the waves. The velocity of field-aligned beams remains essentially the same, but their density is generally lower when the IMF strength increases, due to the lower Mach number. Also, we identify in the regular IMF strength run ridges of suprathermal ions which disappear at higher IMF strength. These structures may be a new signature of the foreshock compressional boundary. The foreshock wave field is structured over smaller scales in higher IMF conditions, due to both the period of the foreshock waves and the transverse extent of the wave fronts being smaller. While the foreshock is mostly permeated by monochromatic waves at typical IMF strength, we find that magnetosonic waves at different frequencies coexist in the other run. They are generated by multiple beams of suprathermal ions, while only a single beam is observed at typical IMF strength. The consequences of these differences for solar wind-magnetosphere coupling are discussed. Plain Language Summary Our solar system is filled with a stream of particles escaping from the Sun, called the solar wind. The Earth is shielded from these particles by its magnetic field, which creates a magnetic bubble around our planet, the magnetosphere. Because the solar wind flow is supersonic, a bow shock forms in front of the magnetosphere to slow it down. The outermost region of the near-Earth space is called the foreshock. It is a very turbulent region, filled with particles reflected off the Earth's bow shock, and with a variety of magnetic waves. These waves can be transmitted inside the magnetosphere and create disturbances in the magnetic field on the Earth's surface. In this work, we use supercomputer simulations to study how the foreshock changes when the solar magnetic field, carried by the solar wind, intensifies. This happens in particular during solar storms, which create stormy space weather at Earth and can have adverse consequences on, for example, spacecraft electronics and power grids. We find that the foreshock properties are very different during these events compared to normal conditions and that these changes may have consequences in the regions closer to Earth.
  • Plaschke, Ferdinand; Hietala, Heli; Archer, Martin; Blanco-Cano, Xochitl; Kajdic, Primoz; Karlsson, Tomas; Lee, Sun Hee; Omidi, Nojan; Palmroth, Minna; Roytershteyn, Vadim; Schmid, Daniel; Sergeev, Victor; Sibeck, David (2018)
    The magnetosheath flow may take the form of large amplitude, yet spatially localized, transient increases in dynamic pressure, known as "magnetosheath jets" or "plasmoids" among other denominations. Here, we describe the present state of knowledge with respect to such jets, which are a very common phenomenon downstream of the quasi-parallel bow shock. We discuss their properties as determined by satellite observations (based on both case and statistical studies), their occurrence, their relation to solar wind and foreshock conditions, and their interaction with and impact on the magnetosphere. As carriers of plasma and corresponding momentum, energy, and magnetic flux, jets bear some similarities to bursty bulk flows, which they are compared to. Based on our knowledge of jets in the near Earth environment, we discuss the expectations for jets occurring in other planetary and astrophysical environments. We conclude with an outlook, in which a number of open questions are posed and future challenges in jet research are discussed.
  • Palmroth, Minna; Raptis, Savvas; Suni, Jonas; Karlsson, Tomas; Turc, Lucile; Johlander, Andreas; Ganse, Urs; Pfau-Kempf, Yann; Blanco-Cano, Xochitl; Akhavan-Tafti, Mojtaba; Battarbee, Markus; Dubart, Maxime; Grandin, Maxime; Tarvus, Vertti; Osmane, Adnane (2021)
    Magnetosheath jets are regions of high dynamic pressure, which can traverse from the bow shock towards the magnetopause. Recent modelling efforts, limited to a single jet and a single set of upstream conditions, have provided the first estimations about how the jet parameters behave as a function of position within the magnetosheath. Here we expand the earlier results by doing the first statistical investigation of the jet dimensions and parameters as a function of their lifetime within the magnetosheath. To verify the simulation behaviour, we first identify jets from Magnetosphere Multiscale (MMS) spacecraft data (6142 in total) and confirm the Vlasiator jet general behaviour using statistics of 924 simulated individual jets. We find that the jets in the simulation are in quantitative agreement with the observations, confirming earlier findings related to jets using Vlasiator. The jet density, dynamic pressure, and magnetic field intensity show a sharp jump at the bow shock, which decreases towards the magnetopause. The jets appear compressive and cooler than the magnetosheath at the bow shock, while during their propagation towards the magnetopause they thermalise. Further, the shape of the jets flatten as they progress through the magnetosheath. They are able to maintain their flow velocity and direction within the magnetosheath flow, and they end up preferentially to the side of the magnetosheath behind the quasi-parallel shock. Finally, we find that Vlasiator jets during low solar wind Alfven Mach number M-A are shorter in duration, smaller in their extent, and weaker in terms of dynamic pressure and magnetic field intensity as compared to the jets during high M-A.
  • Palmroth, Minna; Hietala, Heli; Plaschke, Ferdinand; Archer, Martin; Karlsson, Tomas; Blanco-Cano, Xochitl; Sibeck, David; Kajdic, Primoz; Ganse, Urs; Pfau-Kempf, Yann; Battarbee, Markus; Turc, Lucile (2018)
    We use a global hybrid-Vlasov simulation for the magnetosphere, Vlasiator, to investigate magnetosheath high-speed jets. Unlike many other hybrid-kinetic simulations, Vlasiator includes an unscaled geomagnetic dipole, indicating that the simulation spatial and temporal dimensions can be given in SI units without scaling. Thus, for the first time, this allows investigating the magnetosheath jet properties and comparing them directly with the observed jets within the Earth's magnetosheath. In the run shown in this paper, the interplanetary magnetic field (IMF) cone angle is 30 degrees, and a foreshock develops upstream of the quasi-parallel magnetosheath. We visually detect a structure with high dynamic pressure propagating from the bow shock through the magnetosheath. The structure is confirmed as a jet using three different criteria, which have been adopted in previous observational studies. We compare these criteria against the simulation results. We find that the magnetosheath jet is an elongated structure extending earthward from the bow shock by similar to 2.6 R-E, while its size perpendicular to the direction of propagation is similar to 0.5 R-E. We also investigate the jet evolution and find that the jet originates due to the interaction of the bow shock with a high-dynamic-pressure structure that reproduces observational features associated with a short, large-amplitude magnetic structure (SLAMS). The simulation shows that magnetosheath jets can develop also under steady IMF, as inferred by observational studies. To our knowledge, this paper therefore shows the first global kinetic simulation of a magnetosheath jet, which is in accordance with three observational jet criteria and is caused by a SLAMS advecting towards the bow shock.
  • Eastwood, J. P.; Nakamura, R.; Turc, L.; Mejnertsen, L.; Hesse, M. (2017)
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.