Browsing by Subject "ECOLOGY"

Sort by: Order: Results:

Now showing items 1-20 of 102
  • Fondi, Marco; Karkman, Antti; Tamminen, Manu V.; Bosi, Emanuele; Virta, Marko; Fani, Renato; Alm, Eric; McInerney, James O. (2016)
    The spatial distribution of microbes on our planet is famously formulated in the Baas Becking hypothesis as everything is everywhere but the environment selects." While this hypothesis does not strictly rule out patterns caused by geographical effects on ecology and historical founder effects, it does propose that the remarkable dispersal potential of microbes leads to distributions generally shaped by environmental factors rather than geographical distance. By constructing sequence similarity networks from uncultured environmental samples, we show that microbial gene pool distributions are not influenced nearly as much by geography as ecology, thus extending the Bass Becking hypothesis from whole organisms to microbial genes. We find that gene pools are shaped by their broad ecological niche (such as sea water, fresh water, host, and airborne). We find that freshwater habitats act as a gene exchange bridge between otherwise disconnected habitats. Finally, certain antibiotic resistance genes deviate from the general trend of habitat specificity by exhibiting a high degree of cross-habitat mobility. The strong cross-habitat mobility of antibiotic resistance genes is a cause for concern and provides a paradigmatic example of the rate by which genes colonize new habitats when new selective forces emerge.
  • Palacio, Facundo X.; Callaghan, Corey T.; Cardoso, Pedro; Hudgins, Emma J.; Jarzyna, Marta A.; Ottaviani, Gianluigi; Riva, Federico; Rodrigues Leandro Roza, Caio Graco; Shirey, Vaughn; Mammola, Stefano (2022)
    The widespread use of species traits in basic and applied ecology, conservation and biogeography has led to an exponential increase in functional diversity analyses, with > 10 000 papers published in 2010-2020, and > 1800 papers only in 2021. This interest is reflected in the development of a multitude of theoretical and methodological frameworks for calculating functional diversity, making it challenging to navigate the myriads of options and to report detailed accounts of trait-based analyses. Therefore, the discipline of trait-based ecology would benefit from the existence of a general guideline for standard reporting and good practices for analyses. We devise an eight-step protocol to guide researchers in conducting and reporting functional diversity analyses, with the overarching goal of increasing reproducibility, transparency and comparability across studies. The protocol is based on: 1) identification of a research question; 2) a sampling scheme and a study design; 3-4) assemblage of data matrices; 5) data exploration and preprocessing; 6) functional diversity computation; 7) model fitting, evaluation and interpretation; and 8) data, metadata and code provision. Throughout the protocol, we provide information on how to best select research questions, study designs, trait data, compute functional diversity, interpret results and discuss ways to ensure reproducibility in reporting results. To facilitate the implementation of this template, we further develop an interactive web-based application (stepFD) in the form of a checklist workflow, detailing all the steps of the protocol and allowing the user to produce a final 'reproducibility report' to upload alongside the published paper. A thorough and transparent reporting of functional diversity analyses ensures that ecologists can incorporate others' findings into meta-analyses, the shared data can be integrated into larger databases for consensus analyses, and available code can be reused by other researchers. All these elements are key to pushing forward this vibrant and fast-growing field of research.
  • Kotze, D. Johan; Kuoppamaki, Kirsi; Niemikapee, Juhamatti; Mesimaki, Marja; Vaurola, Ville; Lehvavirta, Susanna (2020)
    The proliferation of vegetated, or green roofs, warrant a revisit of the terminology used in order to efficiently, and without confusion, convey information among scientists, policy makers and practitioners. A Web of Science and Google Scholar search (from 1996 to 2018) showed a steady increase in green roof articles, reaching close to 300 per year in WOS and ca. 2500 in Google Scholar, with approximately 10-20%, and up to 40 % of all articles using the terms extensive and/or intensive, especially in recent years. We evaluated the use of these terms, including 'green roof, and 'intensive and extensive roof', found that they are used in confusing ways, and provide compelling evidence that there is a need for revising the terminology. Acknowledging that most, if not all, vegetated roofs are multifunctional, we propose a new classification system based on the roof's primary function(s) and vegetation, such as "stormwater meadow roof", "biodiversity meadow roof", "biodiversity forest roof", or even "multifunctional meadow roof". This new terminological sphere is not meant to be rigid, but should be allowed to evolve so that useful combinations survive the scrutiny of academia and practitioners, while less useful ones go extinct. A clear and standardized terminology will serve to avoid confusion, allow for generalizations and aid in the development of this rapidly-expanding field.
  • Mammola, Stefano; Pavlek, Martina; Huber, Bernhard A.; Isaia, Marco; Ballarin, Francesco; Tolve, Marco; Cupic, Iva; Hesselberg, Thomas; Lunghi, Enrico; Mouron, Samuel; Graco-Roza, Caio; Cardoso, Pedro (2022)
    Species traits are an essential currency in ecology, evolution, biogeography, and conservation biology. However, trait databases are unavailable for most organisms, especially those living in difficult-to-access habitats such as caves and other subterranean ecosystems. We compiled an expert-curated trait database for subterranean spiders in Europe using both literature data (including grey literature published in many different languages) and direct morphological measurements whenever specimens were available to us. We started by updating the checklist of European subterranean spiders, now including 512 species across 20 families, of which at least 192 have been found uniquely in subterranean habitats. For each of these species, we compiled 64 traits. The trait database encompasses morphological measures, including several traits related to subterranean adaptation, and ecological traits referring to habitat preference, dispersal, and feeding strategies. By making these data freely available, we open up opportunities for exploring different research questions, from the quantification of functional dimensions of subterranean adaptation to the study of spatial patterns in functional diversity across European caves.
  • Heinaro, Einari; Tanhuanpaa, Topi; Yrttimaa, Tuomas; Holopainen, Markus; Vastaranta, Mikko (2021)
    Fallen trees decompose on the forest floor and create habitats for many species. Thus, mapping fallen trees allows identifying the most valuable areas regarding biodiversity, especially in boreal forests, enabling well-focused conservation and restoration actions. Airborne laser scanning (ALS) is capable of characterizing forests and the underlying topography. However, its potential for detecting and characterizing fallen trees under varying boreal forest conditions is not yet well understood. ALS-based fallen tree detection methods could improve our understanding regarding the spatiotemporal characteristics of dead wood over large landscapes. We developed and tested an automatic method for mapping individual fallen trees from an ALS point cloud with a point density of 15 points/m2. The presented method detects fallen trees using iterative Hough line detection and delineates the trees around the detected lines using region growing. Furthermore, we conducted a detailed evaluation of how the performance of ALS-based fallen tree detection is impacted by characteristics of fallen trees and the structure of vegetation around them. The results of this study showed that large fallen trees can be detected with a high accuracy in old-growth forests. In contrast, the detection of fallen trees in young managed stands proved challenging. The presented method was able to detect 78% of the largest fallen trees (diameter at breast height, DBH > 300 mm), whereas 30% of all trees with a DBH over 100 mm were detected. The performance of the detection method was positively correlated with both the size of fallen trees and the size of living trees surrounding them. In contrast, the performance was negatively correlated with the amount of undergrowth, ground vegetation, and the state of decay of fallen trees. Especially undergrowth and ground vegetation impacted the performance negatively, as they covered some of the fallen trees and lead to false fallen tree detections. Based on the results of this study, ALS-based collection of fallen tree information should be focused on old-growth forests and mature managed forests, at least with the current operative point densities.
  • Jaatinen, Kim; Moller, Anders P.; Ost, Markus (2019)
    The direction of predator-mediated selection on brain size is debated. However, the speed and the accuracy of performing a task cannot be simultaneously maximized. Large-brained individuals may be predisposed to accurate but slow decision-making, beneficial under high predation risk, but costly under low risk. This creates the possibility of temporally fluctuating selection on brain size depending on overall predation risk. We test this idea in nesting wild eider females (Somateria mollissima), in which head volume is tightly linked to brain mass (r(2) = 0.73). We determined how female relative head volume relates to survival, and characterized the seasonal timing of predation. Previous work suggests that relatively large-brained and small-brained females make slow versus fast nest-site decisions, respectively, and that predation events occur seasonally earlier when predation is severe. Large-brained, late-breeding females may therefore have higher survival during high-predation years, but lower survival during safe years, assuming that predation disproportionately affects late breeders in such years. Relatively large-headed females outsurvived smaller-headed females during dangerous years, whereas the opposite was true in safer years. Predation events occurred relatively later during safe years. Fluctuations in the direction of survival selection on relative brain size may therefore arise due to brain-size dependent breeding phenology.
  • Cinderby, Steve; Archer, Diane; Mehta, Vishal K.; Neale, Chris; Opiyo, Romanus; Pateman, Rachel M.; Muhoza, Cassilde; Adelina, Charrlotte; Tuhkanen, Heidi (2021)
    To ensure future sustainability, cities need to consider concepts of livability and resident wellbeing alongside environmental, economic and infrastructure development equity. The current rapid urbanization experienced in many regions is leading to sustainability challenges, but also offers the opportunity to deliver infrastructure supporting the social aspects of cities and the services that underpin them alongside economic growth. Unfortunately, evidence of what is needed to deliver urban wellbeing is largely absent from the global south. This paper contributes to filling this knowledge gap through a novel interdisciplinary mixed methods study undertaken in two rapidly changing cities (one Thai and one Kenyan) using qualitative surveys, subjective wellbeing and stress measurements, and spatial analysis of urban infrastructure distribution. We find the absence of basic infrastructure (including waste removal, water availability and quality) unsurprisingly causes significant stress for city residents. However, once these services are in place, smaller variations (inequalities) in social (crime, tenure) and environmental (noise, air quality) conditions begin to play a greater role in determining differences in subjective wellbeing across a city. Our results indicate that spending time in urban greenspaces can mitigate the stressful impacts of city living even for residents of informal neighborhoods. Our data also highlights the importance of places that enable social interactions supporting wellbeing-whether green or built. These results demonstrate the need for diversity and equity in the provision of public realm spaces to ensure social and spatial justice. These findings strengthen the need to promote long term livability in LMIC urban planning alongside economic growth, environmental sustainability, and resilience.
  • Siren, Jukka; Lens, Luc; Cousseau, Laurence; Ovaskainen, Otso (2018)
    1. Individual-based models (IBMs) allow realistic and flexible modelling of ecological systems, but their parameterization with empirical data is statistically and computationally challenging. Approximate Bayesian computation (ABC) has been proposed as an efficient approach for inference with IBMs, but its applicability to data on natural populations has not been yet fully explored. 2. We construct an IBM for the metapopulation dynamics of a species inhabiting a fragmented patch network, and develop an ABC method for parameterization of the model. We consider several scenarios of data availability from count data to combination of mark-recapture and genetic data. We analyse both simulated and real data on white-starred robin (Pogonocichla stellata), a passerine bird living in montane forest environment in Kenya, and assess how the amount and type of data affect the estimates of model parameters and indicators of population state. 3. The indicators of the population state could be reliably estimated using the ABC method, but full parameterization was not achieved due to strong posterior correlations between model parameters. While the combination of the data types did not provide more accurate estimates for most of the indicators of population state or model parameters than the most informative data type (ringing data or genetic data) alone, the combined data allowed robust simultaneous estimation of all unknown quantities. 4. Our results show that ABC methods provide a powerful and flexible technique forparameterizing complex IBMs with multiple data sources, and assessing the dynamics of the population in a robust manner.
  • Virta, Leena; Soininen, Janne; Norkko, Alf (2021)
    The global biodiversity loss has increased the need to understand the effects of decreasing diversity, but our knowledge on how species loss will affect the functioning of communities and ecosystems is still very limited. Here, the levels of taxonomic and functional beta diversity and the effect of species loss on functional beta diversity were investigated in an estuary that provides a naturally steep environmental gradient. The study was conducted using diatoms that are among the most important microorganisms in all aquatic ecosystems and globally account for 40% of marine primary production. Along the estuary, the taxonomic beta diversity of diatom communities was high (Bray-Curtis taxonomic similarity 0.044) and strongly controlled by the environment, particularly wind exposure, salinity, and temperature. In contrast, the functional beta diversity was low (Bray-Curtis functional similarity 0.658) and much less controlled by the environment. Thus, the diatom communities stayed functionally almost similar despite large changes in species composition and environment. This may indicate that, through high taxonomic diversity and redundancy in functions, microorganisms provide an insurance effect against environmental change. However, when studying the effect of decreasing species richness on functional similarity of communities, simulated species loss to 45% of the current species richness decreased functional similarity significantly. This suggests that decreasing species richness may increase variability and reduce the stability and resilience of communities. These results highlight the importance of high taxonomic biodiversity for the stable functioning of benthic communities.
  • Halliday, Fletcher W.; Rohr, Jason R.; Laine, Anna-Liisa (2020)
    The dilution effect predicts increasing biodiversity to reduce the risk of infection, but the generality of this effect remains unresolved. Because biodiversity loss generates predictable changes in host community competence, we hypothesised that biodiversity loss might drive the dilution effect. We tested this hypothesis by reanalysing four previously published meta-analyses that came to contradictory conclusions regarding generality of the dilution effect. In the context of biodiversity loss, our analyses revealed a unifying pattern: dilution effects were inconsistently observed for natural biodiversity gradients, but were commonly observed for biodiversity gradients generated by disturbances causing losses of biodiversity. Incorporating biodiversity loss into tests of generality of the dilution effect further indicated that scale-dependency may strengthen the dilution effect only when biodiversity gradients are driven by biodiversity loss. Together, these results help to resolve one of the most contentious issues in disease ecology: the generality of the dilution effect.
  • Morrison, C. A.; Aunins, A.; Benko, Z.; Brotons, L.; Chodkiewicz, T.; Chylarecki, P.; Escandell, Jose M.; Eskildsen, D. P.; Gamero, A.; Herrando, S.; Jiguet, F.; Kålås, J. A.; Kamp, J.; Klvanova, A.; Kmecl, P.; Lehikoinen, A.; Lindström, Å.; Moshøj, C.; Noble, D. G.; Qien, I. J.; Paquet, J-Y; Reif, J.; Sattler, T.; Seaman, B. S.; Teufelbauer, N.; Trautmann, S.; van Turnhout, C. A. M.; Vorisek, P.; Butler, S. J. (2021)
    Birdsong has long connected humans to nature. Historical reconstructions using bird monitoring and song recordings collected by citizen scientists reveal that the soundscape of birdsong in North America and Europe is both quieter and less varied, mirroring declines in bird diversity and abundance. Natural sounds, and bird song in particular, play a key role in building and maintaining our connection with nature, but widespread declines in bird populations mean that the acoustic properties of natural soundscapes may be changing. Using data-driven reconstructions of soundscapes in lieu of historical recordings, here we quantify changes in soundscape characteristics at more than 200,000 sites across North America and Europe. We integrate citizen science bird monitoring data with recordings of individual species to reveal a pervasive loss of acoustic diversity and intensity of soundscapes across both continents over the past 25 years, driven by changes in species richness and abundance. These results suggest that one of the fundamental pathways through which humans engage with nature is in chronic decline, with potentially widespread implications for human health and well-being.
  • Quesada, J.; Chavez-Zichinelli, Carlos A.; Garcia-Arroyo, Michelle; Yeh, Pamela J.; Guevara, R.; Izquierdo-Palma, J.; MacGregor-Fors, I. (2022)
    Bold or shy? Examining the risk-taking behavior and neophobia of invasive and non-invasive house sparrows. Behavior provides a useful framework for understanding specialization, with animal personality aiding our understanding of the invasiveness of birds. Invasions imply dispersion into unknown areas and could require changes in behavior or spatial clustering based on personality. Reduced neophobia and increased exploring behavior could allow individuals to colonize new areas as they test and use non-familiar resources. Here, we hypothesized that house sparrow (Passer domesticus) individuals from invasive populations would exhibit bolder behavior than in non-invasive populations. We assessed risk taking and neophobia in male house sparrows in Barcelona (where it is considered native) and in Mexico City (where it has become widely invasive), captured in two different habitats, urban and non-urban. We assessed latency to enter an experimental cage and to explore it, and latency to feed and feeding time in the presence of a novel object. We found that sparrows from Mexico City, both from urban and non-urban areas, were quicker to enter the experimental cage than the sparrows from Barcelona. The time it took the birds to start exploring the cage gave a similar result. We found no differences between cities or habitats in the latency to feed and feeding time while exposed to a novel object. Our results partially support the view that the invader populations from Mexico City are bolder than those from Barcelona. Behavior is an important component of plasticity and its variability may have an important effect on adaptation to local situations. Future studies should disentangle the underlying mechanisms that explain the different personalities found in populations of different regions, contrasting populations of different densities, and taking different food availability scenarios into account.
  • Kuussaari, Mikko; Toivonen, Marjaana; Heliola, Janne; Poyry, Juha; Mellado, Jorge; Ekroos, Johan; Hyyrylainen, Vesa; Vähä-Piikkiö, Inkeri; Tiainen, Juha (2021)
    Good knowledge on how increasing urbanization affects biodiversity is essential in order to preserve biodiversity in urban green spaces. We examined how urban development affects species richness and total abundance of butterflies as well as the occurrence and abundance of individual species within the Helsinki metropolitan area in Northern Europe. Repeated butterfly counts in 167 separate 1-km-long transects within Helsinki covered the entire urbanization gradient, quantified by human population density and the proportion of built-up area (within a 50-m buffer surrounding each butterfly transect). We found consistently negative effects of both human population density and built-up area on all studied butterfly variables, though butterflies responded markedly more negatively to increasing human population density than to built-up area. Responses in butterfly species richness and total abundance showed higher variability in relation to proportion of built-up area than to human density, especially in areas of high human density. Increasing human density negatively affected both the abundance and the occurrence of 47% of the 19 most abundant species, whereas, for the proportion of built-up area, the corresponding percentages were 32% and 32%, respectively. Species with high habitat specificity and low mobility showed higher sensitivity to urbanization (especially high human population density) than habitat generalists and mobile species that dominated the urban butterfly communities. Our results suggest that human population density provides a better indicator of urbanization effects on butterflies compared to the proportion of built-up area. The generality of this finding should be verified in other contexts and taxonomic groups.
  • Andersen, Line Holm; Nummi, Petri; Rafn, Jeppe; Frederiksen, Cecilie Majgaard Skak; Kristjansen, Mads Prengel; Lauridsen, Torben Linding; Trojelsgaard, Kristian; Pertoldi, Cino; Bruhn, Dan; Bahrndorff, Simon (2021)
    The succession-driven reed bed habitat hosts a unique flora and fauna including several endangered invertebrate species. Reed beds can be managed through commercial winter harvest, with implications for reed bed conservation. However, the effects of winter harvest on the invertebrate community are not well understood and vary across studies and taxonomic levels. The aim of this study was to investigate the effects of reed harvest on invertebrate communities. Ground-dwelling and aerial invertebrates were continuously sampled for 10 weeks in the largest coherent reed bed of Scandinavia in order to assess how time since last reed harvest (0, 3, and 25years) influences invertebrate biomass, biodiversity and community structure across taxonomic levels. Biomass was measured and all specimens were sorted to order level, and Coleoptera was even sorted to species level. The invertebrate community showed distinct compositional differences across the three reed bed ages. Furthermore, biomass of both aerial and ground-dwelling invertebrates was highest in the age-0 reed bed and lowest in the age-25 reed bed. Generally, biodiversity showed an opposite trend with the highest richness and diversity in the age-25 reed bed. We conclude that it is possible to ensure high insect biomass and diversity by creating a mosaic of reed bed of different ages through small-scale harvest in the largest coherent reed bed in Scandinavia. The youngest red beds support a high invertebrate biomass whereas the oldest reed beds support a high biodiversity. Collectively, this elevate our understanding of reed harvest and the effects it has on the invertebrate communities, and might aid in future reed bed management and restoration.
  • Hamalainen, Liisa; Rowland, Hannah M.; Mappes, Johanna; Thorogood, Rose (2017)
    Video playback is becoming a common method for manipulating social stimuli in experiments. Parid tits are one of the most commonly studied groups of wild birds. However, it is not yet clear if tits respond to video playback or how their behavioural responses should be measured. Behaviours may also differ depending on what they observe demonstrators encountering. Here we present blue tits (Cyanistes caeruleus) videos of demonstrators discovering palatable or aversive prey (injected with bitter-tasting Bitrex) from coloured feeding cups. First we quantify variation in demonstrators' responses to the prey items: aversive prey provoked high rates of beak wiping and head shaking. We then show that focal blue tits respond differently to the presence of a demonstrator on a video screen, depending on whether demonstrators discover palatable or aversive prey. Focal birds faced the video screen more during aversive prey presentations, and made more head turns. Regardless of prey type, focal birds also hopped more frequently during the presence of a demonstrator (compared to a control video of a different coloured feeding cup in an empty cage). Finally, we tested if demonstrators' behaviour affected focal birds' food preferences by giving individuals a choice to forage from the same cup as a demonstrator, or from the cup in the control video. We found that only half of the individuals made their choice in accordance to social information in the videos, i.e., their foraging choices were not different from random. Individuals that chose in accordance with a demonstrator, however, made their choice faster than individuals that chose an alternative cup. Together, our results suggest that video playback can provide social cues to blue tits, but individuals vary greatly in how they use this information in their foraging decisions.
  • Linden, Elin; te Beest, Mariska; Aubreu, Ilka; Moritz, Thomas; Sundqvist, Maja K.; Barrio, Isabel C.; Boike, Julia; Bryant, John P.; Brathen, Kari Anne; Buchwal, Agata; Bueno, C. Guillermo; Currier, Alain; Egelkraut, Dagmar D.; Forbes, Bruce C.; Hallinger, Martin; Heijmans, Monique; Hermanutz, Luise; Hik, David S.; Hofgaard, Annika; Holmgren, Milena; Huebner, Diane C.; Hoye, Toke T.; Jonsdottir, Ingibjorg S.; Kaarlejärvi, Elina; Kissler, Emilie; Kumpula, Timo; Limpens, Juul; Myers-Smith, Isla H.; Normand, Signe; Post, Eric; Rocha, Adrian; Schmidt, Niels Martin; Skarin, Anna; Soininen, Eeva M.; Sokolov, Aleksandr; Sokolova, Natalia; Speed, James D. M.; Street, Lorna; Tananaev, Nikita; Tremblay, Jean-Pierre; Urbanowicz, Christine; Watts, David A.; Zimmermann, Heike; Olofsson, Johan (2022)
    Spatial variation in plant chemical defence towards herbivores can help us understand variation in herbivore top-down control of shrubs in the Arctic and possibly also shrub responses to global warming. Less defended, non-resinous shrubs could be more influenced by herbivores than more defended, resinous shrubs. However, sparse field measurements limit our current understanding of how much of the circum-Arctic variation in defence compounds is explained by taxa or defence functional groups (resinous/non-resinous). We measured circum-Arctic chemical defence and leaf digestibility in resinous (Betula glandulosa, B. nana ssp. exilis) and non-resinous (B. nana ssp. nana, B. pumila) shrub birches to see how they vary among and within taxa and functional groups. Using liquid chromatography-mass spectrometry (LC-MS) metabolomic analyses and in vitro leaf digestibility via incubation in cattle rumen fluid, we analysed defence composition and leaf digestibility in 128 samples from 44 tundra locations. We found biogeographical patterns in anti-herbivore defence where mean leaf triterpene concentrations and twig resin gland density were greater in resinous taxa and mean concentrations of condensing tannins were greater in non-resinous taxa. This indicates a biome-wide trade-off between triterpene- or tannin-dominated defences. However, we also found variations in chemical defence composition and resin gland density both within and among functional groups (resinous/non-resinous) and taxa, suggesting these categorisations only partly predict chemical herbivore defence. Complex tannins were the only defence compounds negatively related to in vitro digestibility, identifying this previously neglected tannin group as having a potential key role in birch anti-herbivore defence. We conclude that circum-Arctic variation in birch anti-herbivore defence can be partly derived from biogeographical distributions of birch taxa, although our detailed mapping of plant defence provides more information on this variation and can be used for better predictions of herbivore effects on Arctic vegetation.
  • Bolotov, Ivan N.; Makhrov, Alexander A.; Gofarov, Mikhail Yu.; Aksenova, Olga V.; Aspholm, Paul E.; Bespalaya, Yulia V.; Kabakov, Mikhail B.; Kolosova, Yulia S.; Kondakov, Alexander V.; Ofenbock, Thomas; Ostrovsky, Andrew N.; Popov, Igor Yu.; von Proschwitz, Ted; Rudzite, Mudite; Rudzitis, Maris; Sokolova, Svetlana E.; Valovirta, Ilmari; Vikhrev, Ilya V.; Vinarski, Maxim V.; Zotin, Alexey A. (2018)
    The effects of climate change on oligotrophic rivers and their communities are almost unknown, albeit these ecosystems are the primary habitat of the critically endangered freshwater pearl mussel and its host fishes, salmonids. The distribution and abundance of pearl mussels have drastically decreased throughout Europe over the last century, particularly within the southern part of the range, but causes of this wide-scale extinction process are unclear. Here we estimate the effects of climate change on pearl mussels based on historical and recent samples from 50 rivers and 6 countries across Europe. We found that the shell convexity may be considered an indicator of the thermal effects on pearl mussel populations under warming climate because it reflects shifts in summer temperatures and is significantly different in viable and declining populations. Spatial and temporal modeling of the relationship between shell convexity and population status show that global climate change could have accelerated the population decline of pearl mussels over the last 100 years through rapidly decreasing suitable distribution areas. Simulation predicts future warming-induced range reduction, particularly in southern regions. These results highlight the importance of large-scale studies of keystone species, which can underscore the hidden effects of climate warming on freshwater ecosystems.
  • Graco-Roza, Caio; Segura, Angel M.; Kruk, Carla; Domingos, Patricia; Soininen, Janne; Marinho, Marcelo Manzi (2021)
    Emergent neutrality (EN) suggests that species must be sufficiently similar or sufficiently different in their niches to avoid interspecific competition. Such a scenario results in a transient pattern with clumps and gaps of species abundance along the niche axis (e.g. represented by body size). From this perspective, clumps are groups of coexisting species with negligible fitness differences and stochastic abundance fluctuations. Plankton is an excellent model system for developing and testing ecological theories, especially those related to size structure and species coexistence. We tested EN predictions using the phytoplankton community along the course of a tropical river considering 1) body size structure, 2) functional clustering of species in terms of morphology-based functional groups (MBFG) and 3) the functional similarity among species concerning their functional traits. Two main clumps in the body size axis (clump I and II) were conspicuous through time and were detected in different stretches of the river. Clump I comprised medium-sized species from the MBFGs IV, V and VI while clump II included large-bodied species from the MBFGs V and VI. Pairwise differences in species biovolume correlated with species functional similarity when the whole species pool was considered, but not among species within the same clump. Although clumps comprised multiple MBFGs, the dominant species within the clump belonged always to the same MBFG. Also, within-clump species biovolume increased with functional distinctiveness considering both seasons and stretches, except the lower course. These results suggest that species within clumps behave in a quasi-neutral state, but even minor shifts in trait composition may affect species biovolume. Our findings point that EN belongs to the plausible mechanisms explaining community assembly in river ecosystems.
  • Chen, Zhi-Hai; Qin, Xin-Cheng; Song, Rui; Shen, Yi; Chen, Xiao-Ping; Wang, Wen; Zhao, Yong-Xiang; Zhang, Jing-Shan; He, Jin-Rong; Li, Ming-Hui; Zhao, Xue-Hua; Liu, De-Wei; Fu, Xiao-Kang; Tian, Di; Li, Xing-Wang; Xu, Jianguo; Plyusnin, Alexander; Holmes, Edward C.; Zhang, Yong-Zhen (2014)
  • van der Wal, Jessica E. M.; Thorogood, Rose; Horrocks, Nicholas P. C. (2021)
    Collaboration and diversity are increasingly promoted in science. Yet how collaborations influence academic career progression, and whether this differs by gender, remains largely unknown. Here, we use co-authorship ego networks to quantify collaboration behaviour and career progression of a cohort of contributors to biennial International Society of Behavioral Ecology meetings (1992, 1994, 1996). Among this cohort, women were slower and less likely to become a principal investigator (PI; approximated by having at least three last-author publications) and published fewer papers over fewer years (i.e. had shorter academic careers) than men. After adjusting for publication number, women also had fewer collaborators (lower adjusted network size) and published fewer times with each co-author (lower adjusted tie strength), albeit more often with the same group of collaborators (higher adjusted clustering coefficient). Authors with stronger networks were more likely to become a PI, and those with less clustered networks did so more quickly. Women, however, showed a stronger positive relationship with adjusted network size (increased career length) and adjusted tie strength (increased likelihood to become a PI). Finally, early-career network characteristics correlated with career length. Our results suggest that large and varied collaboration networks are positively correlated with career progression, especially for women.