Browsing by Subject "ECOSYSTEM SERVICES"

Sort by: Order: Results:

Now showing items 1-20 of 74
  • Laurila-Pant, Mirka; Mäntyniemi, Samu; Östman, Örjan; Olsson, Jens; Uusitalo, Laura; Lehikoinen, Annukka (2021)
    Ecological indicator approaches typically compare the prevailing state of an ecosystem component to a reference state reflecting good environmental conditions, i.e. the desirable state. However, defining the reference state is challenging due to a wide range of uncertainties related to natural variability and measurement error in data, as well as ecological understanding. This study propose a novel probabilistic approach combining historical monitoring data and ecological understanding to estimate the uncertainty associated with the boundary value of an ecological indicator between good and poor environmental states. Bayesian inference is used to estimate the epistemic uncertainty about the true state of an indicator variable during an historical reference period. This approach replaces the traditional boundary value with probability distribution, indicating the uncertainty about the boundary between environmental states providing a transparent safety margin associated with the risk of misclassification of the indicator's state. The approach is demonstrated by applying it to a time-series of an ecological status indicator, 'Abundance of coastal key fish species', included in HELCOM's Baltic Sea regional status assessment. We suggest that acknowledgement of the uncertainty behind the final classification leads to more transparent and better-informed decision-making processes.
  • Jacobs, Sander; Dendoncker, Nicolas; Martin-Lopez, Berta; Barton, David Nicholas; Gomez-Baggethun, Erik; Boeraeve, Fanny; McGrath, Francesca L.; Vierikko, Kati; Geneletti, Davide; Sevecke, Katharina J.; Pipart, Nathalie; Primmer, Eeva; Mederly, Peter; Schmidt, Stefan; Aragao, Alexandra; Baral, Himlal; Bark, Rosalind H.; Briceno, Tania; Brogna, Delphine; Cabral, Pedro; De Vreese, Rik; Liquete, Camino; Mueller, Hannah; Peh, Kelvin S. -H.; Phelan, Anna; Rincon, Alexander R.; Rogers, Shannon H.; Turkelboom, Francis; Van Reeth, Wouter; van Zanten, Boris T.; Wam, Hilde Karine; Washbourne, Carla-Leanne (2016)
    We are increasingly confronted with severe social and economic impacts of environmental degradation all over the world. From a valuation perspective, environmental problems and conflicts originate from trade-offs between values. The urgency and importance to integrate nature's diverse values in decisions and actions stand out more than ever. Valuation, in its broad sense of 'assigning importance', is inherently part of most decisions on natural resource and land use. Scholars from different traditions -while moving from heuristic interdisciplinary debate to applied transdisciplinary science- now acknowledge the need for combining multiple disciplines and methods to represent the diverse set of values of nature. This growing group of scientists and practitioners share the ambition to explore how combinations of ecological, socio-cultural and economic valuation tools can support real-life resource and land use decision-making. The current sustainability challenges and the ineffectiveness of single-value approaches to offer relief demonstrate that continuing along a single path is no option. We advocate for the adherence of a plural valuation culture and its establishment as a common practice, by contesting and complementing ineffective and discriminatory single-value approaches. In policy and decision contexts with a willingness to improve sustainability, integrated valuation approaches can be blended in existing processes, whereas in contexts of power asymmetries or environmental conflicts, integrated valuation can promote the inclusion of diverse values through action research and support the struggle for social and environmental justice. The special issue and this editorial synthesis paper bring together lessons from pioneer case studies and research papers, synthesizing main challenges and setting out priorities for the years to come for the field of integrated valuation.
  • Tima, Tanjina Akter; Schneider, Petra; Chanda, Swapan Kumar; Mozumder, Mohammad Mojibul Hoque; Hossain, Mohammad Mosarof; Begum, Amany; Shamsuzzaman, Md. Mostafa (2021)
    Tanguar Haor (TH) is considered one of the Ecologically Critical Areas (ECAs) of Bangladesh and is internationally recognized as RAMSAR wetland (2nd Ramsar site) known to provide multiple ecosystem services to the society. Nevertheless, multidimensional threats and stressors, the capacity to supply ESs, and the biodiversity of the TH significantly degrades and threatens this wetland's conservation and sustainability. Although the legal framework promises the sustainable conservation of fisheries resources, information on the implementation scenarios of fisheries laws, regulations, and policies in the TH Ramsar are scant. By merging qualitative and quantitative data of primary and secondary sources, this research aimed to analyze the legal framework to check the effectiveness of regulations for non-conflicting fisheries resources and the sustainable conservation of the TH Ramsar. Primary empirical data were collected by employing Participatory Rural Appraisal (PRA) tools, i.e., 204 semi-structured questionnaire-based individual interviews with fishers, three focus group discussions, and 14 key informants' interviews in three fishing villages in the TH. In contrast, secondary data was set by reviewing published literature and related official documents. Results showed that, due to weak enforcement with inadequate surveillance and poor implementation of the legal framework, there was a high non-compliance with fishing laws, rules, and policies. Destructive and prohibited fishing gears, e.g., the use of small mesh fine nylon nets (current jal), purse seine net (ber jal), and the harvesting during ban period-illicit catch were widespread in the study areas. In addition, catching undersized fish, fishing at the restricted areas (sanctuary area), and fishing during spawning seasons occur often. There is a crying need for a comprehensive legal and policy framework to contextualize the local context, ensure the proper implementation of the fishing laws and regulations, increase the managerial inefficiency of enforcing agencies, ensure livelihood support during the fishing ban, and afford good alternative income options are still significant issues for good governance in the Tanguar Haor ECA. Findings might help to identify the gaps and misunderstanding of the existing legal practice while submitting urgent attention to the need for drawing a comprehensive legal and policy framework (contextually modified according to the local context), taking initiatives and acting synchronously for proper implementation, and calling transdisciplinary collaboration and cooperation among the agencies that may ensure the non-conflicting use of the natural resources of the TH that can be also helpful for the better conservation of this Ramsar wetland.
  • Kurttila, Mikko; Haara, Arto; Juutinen, Artti; Karhu, Jouni; Ojanen, Paavo; Pykäläinen, Jouni; Saarimaa, Miia; Tarvainen, Oili; Sarkkola, Sakari; Tolvanen, Anne (2020)
    This study demonstrates the characteristics of the new generic project portfolio selection tool YODA ("Your Own Decision Aid"). YODA does not include a mathematical aggregation model. Instead, the decision maker's preferences are defined by the interactive articulation of acceptance thresholds of project-level decision criteria. Transparency and ease of adopting the method in participatory planning are sought using the method's simple preference input. The characteristics of the YODA tool are introduced by presenting how it has been applied in participatory land use planning in northern Finland in selecting a combination of peat production sites to attain the goals defined at municipal level. In this process, each stakeholder first constructed a project portfolio that best met his or her preferences. In doing this, acceptance thresholds for project-level decision criteria were defined. In total, eight decision criteria were related to economic value, biodiversity, social impacts, and ecosystem services. Subsequently, the portfolios of different stakeholders were combined in line with the principles of robust portfolio modelling. Core projects were accepted by all stakeholders, while exterior projects were not accepted, and borderline projects by some of the stakeholders. Although the land use planning situation at hand was highly sensitive, because it was related to various aspects of sustainability, the use of YODA provided useful results. The first meeting with stakeholders identified 52 out of 99 sites that none of the stakeholders would use for energy peat production, due to their characteristics, whereas, in the second meeting, a smaller stakeholder group found 18 core projects and 26 borderline projects which could be potential areas for energy peat production. We conclude that YODA-as a generic project portfolio tool-can be used in various planning situations.
  • Tanhuanpää, Topi; Kankare, Ville; Setälä, Heikki; Yli-Pelkonen, Vesa; Vastaranta, Mikko; Niemi, Mikko T.; Raisio, Juha; Holopainen, Markus (2017)
    Assessment of the amount of carbon sequestered and the value of ecosystem services provided by urban trees requires reliable data. Predicting the proportions and allometric relationships of individual urban trees with models developed for trees in rural forests may result in significant errors in biomass calculations. To better understand the differences in biomass accumulation and allocation between urban and rural trees, two existing biomass models for silver birch (Betula pendula Roth) were tested for their performance in assessing the above-ground biomass (AGB) of 12 urban trees. In addition, the performance of a volume-based method utilizing accurate terrestrial laser scanning (TLS) data and stem density was evaluated in assessing urban tree AGB. Both tested models underestimated the total AGB of single trees, which was mainly due to a substantial underestimation of branch biomass. The volume-based method produced the most accurate estimates of stem biomass. The results suggest that biomass models originally based on sample trees from rural forests should not be used for urban, open-grown trees, and that volume-based methods utilizing TLS data are a promising alternative for non-destructive assessment of urban tree AGB. (C) 2017 Elsevier GmbH. All rights reserved.
  • Kaikkonen, Laura; Venesjärvi, Riikka; Nygård, Henrik; Kuikka, Sakari (2018)
    Mineral extraction from the seabed has experienced a recent surge of interest from both the mining industry and marine scientists. While improved methods of geological investigation have enabled the mapping of new seafloor mineral reserves, the ecological impacts of mining in both the deep sea and the shallow seabed are poorly known. This paper presents a synthesis of the empirical evidence from experimental seabed mining and parallel industries to infer the effects of seabed mineral extraction on marine ecosystems, focusing on polymetallic nodules and ferromanganese concretions. We use a problem-structuring framework to evaluate causal relationships between pressures caused by nodule extraction and the associated changes in marine ecosystems. To ensure that the rationale behind impact assessments is clear, we propose that future impact assessments use pressure-specific expert elicitation. We further discuss integrating ecosystem services in the impact assessments and the implications of current methods for environmental risk assessments.
  • Kemp, James; López-Baucells, Adrià; Rocha, Ricardo; Wangensteen, Owen S.; Andriatafika, Zo Emmanuel; Nair, Abhilash; Cabeza, Mar (2019)
    The conversion of natural habitats to agriculture is one of the main drivers of biotic change. Madagascar is no exception and land-use change, mostly driven by slash-and-burn agriculture, is impacting the island's exceptional biodiversity. Although most species are negatively affected by agricultural expansion, some, such as synanthropic bats, are capable of exploring newly available resources and benefit from man-made agricultural ecosystems. As bats are known predators of agricultural pests it seems possible that Malagasy bats may be preferentially foraging within agricultural areas and therefore provide important pest suppression services. To investigate the potential role of bats as pest suppressors, we conducted acoustic surveys of insectivorous bats in and around Ranomafana National Park, Madagascar, during November and December 2015. We surveyed five landcover types: irrigated rice, hillside rice, secondary vegetation, forest fragment and continuous forest. 9569 bat passes from a regional assemblage of 19 species were recorded. In parallel, we collected faeces from the six most common bat species to detect insect pest species in their diet using DNA metabarcoding. Total bat activity was higher over rice fields when compared to forest and bats belonging to the open space and edge space sonotypes were the most benefited by the conversion of forest to hillside and irrigated rice. Two economically important rice pests were detected in the faecal samples collected - the paddy swarming armyworm Spodoptera mauritia was detected in Mops leucogaster samples while the grass webworm Herpetogramma licarsisalis was detected from Mormopterus jugularis and Miniopterus majori samples. Other crops pests detected included the sugarcane cicada Yanga guttulata, the macadamia nut-borer Thaumatotibia batrachopa and the sober tabby Ericeia inangulata (a pest of citrus fruits). Samples from all bat species also contained reads from important insect disease vectors. In light of our results we argue that Malagasy insectivorous bats have the potential to suppress agricultural pests. It is important to retain and maximise Malagasy bat populations as they may contribute to higher agricultural yields and promote sustainable livelihoods.
  • Teucher, Mike; Schmitt, Christine B.; Wiese, Anja; Apfelbeck, Beate; Maghenda, Marianne; Pellikka, Petri; Lens, Luc; Habel, Jan Christian (2020)
    Habitat destruction and deterioration are amongst the main drivers of biodiversity loss. Increasing demand for agricultural products, timber and charcoal has caused the rapid destruction of natural forests, especially in the tropics. The Taita Hills in southern Kenya are part of the Eastern Afromontane Biodiversity Hotspot and represent a highly diverse cloud forest ecosystem. However, the cloud forest suffers extremely from wood and timber exploitation and transformation into exotic tree plantations and agricultural fields. Existing conservation regulations and moratoriums aim to prevent further forest destruction. In this study, we analyzed land cover change and shifts in landscape configuration for a fraction of the Taita Hills, based on satellite imageries for the years 2003, 2011 and 2018. We found that the coverage of natural cloud forest further decreased between 2003 and 2018, despite the effort to conserve the remaining cloud forest patches and to reforest degraded areas by various conservation and management initiatives. In parallel, the proportion of exotic tree plantations and bushland strongly increased. Moreover, mean natural forest patch size decreased and the degree of interspersion with other land cover types increased notably. Logging bans for indigenous trees seem to have resulted in local opposition to the planting of indigenous trees and thereby hindered the recovering of the cloud forest. We suggest to enhance local awareness on the ecological value of the natural forest by community-based Conservation Forest Associations and to encourage the planting of indigenous tree species in farmer-owned woodlots. Besides, bottom-up management systems that allow for local participation in decision-making and benefit-sharing related to forest resources would be a way forward to achieve the sustainable use and conservation of the last remaining natural forest patches in the Taita Hills. (C) 2020 The Authors. Published by Elsevier B.V.
  • Salomaa, Anna; Paloniemi, Riikka; Kotiaho, Janne S.; Kettunen, Marianne; Apostolopoulou, Evangelia; Cent, Joanna (2017)
    The gradually decreasing connectivity of habitats threatens biodiversity and ecological processes valuable to humans. Green infrastructure is promoted by the European Commission as a key instrument for the conservation of ecosystems in the EU biodiversity strategy to 2020. Green infrastructure has been defined as a network of natural and semi-natural areas, designed and managed to deliver a wide range of ecosystem services. We surveyed Finnish experts' perceptions on the development of green infrastructure within the existing policy framework. Our results show that improving the implementation of existing conservation policy instruments needs to be an integral part of developing green infrastructure. Despite the potential of green infrastructure to benefit biodiversity, existing conceptual ambiguity of green infrastructure with rather complex role of ecosystem services - and the possible interpretation of this in practice - raises concerns regarding its ability to contribute to biodiversity conservation.
  • Helenius, Juha; Hagolani-Albov, Sophia; Koppelmäki, Kari (2020)
    Critics of modern food systems argue for the need to shift from a consolidated and concentrated, often monoculture based agro-industrial model toward diversified, post-fossil, and nutrient recycling food systems. The abundance of acute and obvious environmental problems in the agricultural sub-systems of the broader food system(s) have resulted in a focus on technological and natural scientific research into "solving" these point of production problems. Yet, there are many facets of food systems that are vital to sustainability which are not addressed even if the environmental problems were solved. In this article, we argue for agroecological symbiosis (AES) as a generic arrangement for re-configuring the primary production of food in agriculture, the processing of food, and development of a food community to work toward system-level sustainability. The guiding principle of this concept was the desire to base farming and food processing on renewable bioenergy, to close nutrient cycles, to break away from the consolidated food chain, to be more transparent and connected with consumers, and to revitalize the rural spaces where farms generally operate. Through a consistent and robust collaboration and co-creative process with transdisciplinary actors, ranging from food producers, and processers to policy actors, we designed a food system model based on networks of AES (NAES). The NAES would form place-based food networks, replacing the consolidated commodity chains. The NAES supports sustainable interactions from a biophysical and socio-cultural perspective. In this paper, we explain the AES concept, give an overview of the process of co-creating the pilot AES, and a proposal for the extension of the AES, as NAES, to create sustainable food systems. Overall, we conclude that the AES model holds potential for creating place-based food systems that further the sustainability agenda.
  • Nieminen, M.; Hökkä, H.; Laiho, R.; Juutinen, A.; Ahtikoski, A.; Pearson, M.; Kojola, S.; Sarkkola, S.; Launiainen, S.; Valkonen, S.; Penttilä, T.; Lohila, A.; Saarinen, M.; Haahti, K.; Makipää, R.; Miettinen, J.; Ollikainen, M. (2018)
    Environmental and economic performance of forestry on drained peatlands was reviewed to consider whether continuous cover forestry (CCF) could be a feasible alternative to even-aged management (EM). CCF was regarded feasible particularly because continuously maintaining a tree stand with significant transpiration and interception capacity would decrease the need for ditch network maintenance. Managing CCF forests in such a way that the ground water levels are lower than in clear-cut EM forests but higher than in mature EM forests could decrease greenhouse gas emissions and negative water quality impacts caused both by anoxic redox reactions and oxidation and mineralization of deep peat layers. Regeneration studies indicated potential for satisfactory natural regeneration under CCF on drained peatlands. An economic advantage in CCF over EM is that fewer investments are needed to establish the forest stand and sustain its growth. Thus, even if the growth of trees in CCF forests were lower than in EM forests, CCF could at least in some peatland sites turn out to be a more profitable forest management regime. An advantage of CCF from the viewpoint of socially optimal forest management is that it plausibly reduces the negative externalities of management compared to EM. We propose that future research in drained peatland forests should focus on assessing the economic and environmental feasibility of CCF.
  • Lehikoinen, Petteri; Lehikoinen, Aleksi; Mikkola-Roos, Markku; Jaatinen, Kim (2017)
    Human actions have led to loss and degradation of wetlands, impairing their suitability as habitat especially for waterbirds. Such negative effects may be mitigated through habitat management. To date scientific evidence regarding the impacts of these actions remains scarce. We studied guild specific abundances of breeding and staging birds in response to habitat management on 15 Finnish wetlands. In this study management actions comprised several means of vegetation removal to thwart overgrowth. Management cost efficiency was assessed by examining the association between site-specific costs and bird abundances. Several bird guilds exhibited positive connections with both habitat management as well as with invested funds. Most importantly, however, red-listed species and species with special conservation concern as outlined by the EU showed positive correlations with management actions, underlining the conservation value of wetland management. The results suggest that grazing was especially efficient in restoring overgrown wetlands. As a whole this study makes it clear that wetland habitat management constitutes a feasible conservation tool. The marked association between invested funds and bird abundance may prove to be a valuable tool for decision makers when balancing costs and impact of conservation measures against one another.
  • Nygård, Henrik; van Beest, Floris M.; Bergqvist, Lisa; Carstensen, Jacob; Gustafsson, Bo G.; Hasler, Berit; Schumacher, Johanna; Schernewski, Gerald; Sokolov, Alexander; Zandersen, Marianne; Fleming, Vivi (2020)
    Decision-support tools (DSTs) synthesize complex information to assist environmental managers in the decision-making process. Here, we review DSTs applied in the Baltic Sea area, to investigate how well the ecosystem approach is reflected in them, how different environmental problems are covered, and how well the tools meet the needs of the end users. The DSTs were evaluated based on (i) a set of performance criteria, (ii) information on end user preferences, (iii) how end users had been involved in tool development, and (iv) what experiences developers/hosts had on the use of the tools. We found that DSTs frequently addressed management needs related to eutrophication, biodiversity loss, or contaminant pollution. The majority of the DSTs addressed human activities, their pressures, or environmental status changes, but they seldom provided solutions for a complete ecosystem approach. In general, the DSTs were scientifically documented and transparent, but confidence in the outputs was poorly communicated. End user preferences were, apart from the shortcomings in communicating uncertainty, well accounted for in the DSTs. Although end users were commonly consulted during the DST development phase, they were not usually part of the development team. Answers from developers/hosts indicate that DSTs are not applied to their full potential. Deeper involvement of end users in the development phase could potentially increase the value and impact of DSTs. As a way forward, we propose streamlining the outputs of specific DSTs, so that they can be combined to a holistic insight of the consequences of management actions and serve the ecosystem approach in a better manner.
  • Cooper, Matthew W.; Di Minin, Enrico; Hausmann, Anna; Qin, Siyu; Schwartz, Aaron J.; Correia, Ricardo A. (2019)
    Due to the importance of public support in fostering positive outcomes for biodiversity, Aichi Biodiversity Target 1 aims to increase public awareness of the value of biodiversity and actions that help to conserve it. However, indicators for this critical target have historically relied on public-opinion surveys that are time-consuming, geographically restricted, and expensive. Here, we present an alternative approach based on tracking the use of biodiversity-related keywords in 31 different languages in online newspapers, social media, and internet searches to monitor Aichi Target 1 in real-time, at a global scale, and at relatively low cost. By implementing the indicator, we show global patterns associated with spatio-temporal variability in public engagement with biodiversity topics, such as a clear drop in conversations around weekends and biodiversity-related topic congruence across culturally similar countries. Highly divergent scores across platforms for each country highlight the importance of sourcing information from multiple data streams. The data behind this global indicator is visualized and publicly available at Biodiversity Engagement and can be used by countries party to the Convention on Biological Diversity (CBD) to report on their progress towards meeting Aichi Target 1 to the' Secretariat. Continued and expanded monitoring using this indicator will provide further insights for better targeting of public awareness campaigns.
  • Forsius, Martin; Kujala, Heini; Minunno, Francesco; Holmberg, Maria; Leikola, Niko; Mikkonen, Ninni; Autio, Iida; Paunu, Ville-Veikko; Tanhuanpää, Topi; Hurskainen, Pekka; Mäyrä, Janne; Kivinen, Sonja; Keski-Saari, Sarita; Kosenius, Anna-Kaisa; Kuusela, Saija; Virkkala, Raimo; Viinikka, Arto; Vihervaara, Petteri; Akujarvi, Anu; Bäck, Jaana; Karvosenoja, Niko; Kumpula, Timo; Kuzmin, Anton; Mäkelä, Annikki; Moilanen, Atte; Ollikainen, Markku; Pekkonen, Minna; Peltoniemi, Mikko; Poikolainen, Laura; Rankinen, Katri; Rasilo, Terhi; Tuominen, Sakari; Valkama, Jari; Vanhala, Pekka; Heikkinen, Risto K (2021)
    The challenges posed by climate change and biodiversity loss are deeply interconnected. Successful co-managing of these tangled drivers requires innovative methods that can prioritize and target management actions against multiple criteria, while also enabling cost-effective land use planning and impact scenario assessment. This paper synthesises the development and application of an integrated multidisciplinary modelling and evaluation framework for carbon and biodiversity in forest systems. By analysing and spatio-temporally modelling carbon processes and biodiversity elements, we determine an optimal solution for their co-management in the study landscape. We also describe how advanced Earth Observation measurements can be used to enhance mapping and monitoring of biodiversity and ecosystem processes. The scenarios used for the dynamic models were based on official Finnish policy goals for forest management and climate change mitigation. The development and testing of the system were executed in a large region in southern Finland (Kokemäenjoki basin, 27 024 km2) containing highly instrumented LTER (Long-Term Ecosystem Research) stations; these LTER data sources were complemented by fieldwork, remote sensing and national data bases. In the study area, estimated total net emissions were currently 4.2 TgCO2eq a-1, but modelling of forestry measures and anthropogenic emission reductions demonstrated that it would be possible to achieve the stated policy goal of carbon neutrality by low forest harvest intensity. We show how this policy-relevant information can be further utilised for optimal allocation of set-aside forest areas for nature conservation, which would significantly contribute to preserving both biodiversity and carbon values in the region. Biodiversity gain in the area could be increased without a loss of carbon-related benefits.
  • Rochette, Anne-Julie; Akpona, Jean Didier T.; Akpona, Hugues Adeloui; Akouehou, Gaston S.; Kwezi, Blanchard Mayundo; Djagoun, Chabi A. M. S.; Habonimana, Bernadette; Idohou, Rodrigue; Legba, Ingride S.; Nzigidahera, Benoit; Matilo, Augustin Orou; Taleb, Mohammed Sghir; Bamoninga, Benjamin Toirambe; Ivory, Sarah; de Bisthoven, Luc Janssens; Vanhove, Maarten P. M. (2019)
    There is an increasing need for monitoring schemes that help understand the evolution of the global biodiversity crisis and propose solutions for the future. Indicators, including temporal baselines, are crucial to measure the change in biodiversity over time, to evaluate progress towards its conservation and sustainable use and to set conservation priorities. They help design and monitor national and regional policies on biodiversity; they also feed into national reporting on international agreements such as the Convention on Biological Diversity and the Sustainable Development Goals. We analyse the methodological approach of five small African projects resulting from a call to promote indicator development, improve monitoring capacity and strengthen the science-policy interface in the field of biodiversity. We compared their approach to existing guidance provided by the international community, specifically the Biodiversity Indicators Partnership. To this end, we assess whether internationally recommended steps are effectively applied to national/local biodiversity monitoring in selected developing countries. We also present lessons learnt from workshop interactions between partners involved in these projects. Through our pilot projects we identified data availability and data accessibility, together with the involvement of stakeholders, as critical steps in indicator development. Moreover, there is a need for a better awareness and a wider application of the indicator concept itself. Hence, training of key actors both in the policy and science spheres is needed to operationalize indicators and ensure their continuity and sustainability. We hope that these case studies and lessons learnt can stimulate and support countries in the Global South to formulate policy-relevant biodiversity indicators.
  • Allen, John A.; Setälä, Heikki; Kotze, David Johan (2020)
    Urban residents and their pets utilize urban greenspaces daily. As urban dog ownership rates increase globally, urban greenspaces are under mounting pressure even as the benefits and services they provide become more important. The urine of dogs is high in nitrogen (N) and may represent a significant portion of the annual urban N load. We examined the spatial distribution and impact of N deposition from dog urine on soils in three urban greenspace typologies in Finland: Parks, Tree Alleys, and Remnant Forests. We analyzed soil from around trees, lampposts and lawn areas near walking paths, and compared these to soils from lawn areas 8 m away from pathways. Soil nitrate, ammonium, total N concentrations, and electrical conductivity were significantly higher and soil pH significantly lower near path-side trees and poles relative to the 8 m lawn plots. Also, stable isotope analysis indicates that the primary source of path-side N are distinct from those of the 8 m lawn plots, supporting our hypothesis that dogs are a significant source of N in urban greenspaces, but that this deposition occurs in a restricted zone associated with walking paths. Additionally, we found that Remnant Forests were the least impacted of the three typologies analyzed. We recommend that landscape planners acknowledge this impact, and design parks to reduce or isolate this source of N from the wider environment.
  • Stivrins, N.; Ozola, I.; Galka, M.; Kuske, E.; Alliksaar, T.; Andersen, T. J.; Lamentowicz, M.; Wulf, S.; Reitalu, T. (2017)
    We used variation partitioning to assess the relative importance of drainage, climate and local vegetation composition for the development of a raised bog. As a case study we selected Teici (Teici) Bog in Latvia (north-east Europe). Explanatory variables together explained 74 % of the variation in peat accumulation and only the residue of 26 % remained unexplained. Our study showed that the local vegetation composition and dominant Sphagnum species significantly influence peat accumulation rates. The results of linear models revealed that, under natural conditions, minor drainage and even strong drainage of the peat is associated with a positive growth balance of the system. However, drainage systems can have a measurable impact on peatland ecosystems situated farther away. Our study demonstrates that the average peat accumulation rate in Teici Bog over the last 150 years was 3.5 mm per year. Although the peat accumulation rate has been affected by drainage over the last half-century, it is still 2.8 mm per year. There was no strong correlation with the historical climate record, suggesting that the bog area has buffered the influence of climate change over the last 150 years.
  • Hui, Nan; Liu, Xinxin; Kotze, D. Johan; Jumpponen, Ari; Francini, Gaia; Setala, Heikki (2017)
    Ectomycorrhizal (ECM) fungi are important mutualists for the growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, similar to 50, and > 100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM fungal communities. ECM fungal community composition differed between the two habitats but was driven by taxon rank order reordering, as key ECM fungal taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi, as inferred in relation to the time since park construction, differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age-related effects. Our data show that plant-ECM fungus interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity. IMPORTANCE In urban environments, soil and trees improve environmental quality and provide essential ecosystem services. ECM fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities, including ECM and saprotrophic fungi, in urban parks are affected by plant functional type and park age. However, ECM fungal diversity and its responses to urban stress, plant functional type, or park age remain unknown. The significance of our study is in identifying, in greater detail, the responses of ECM fungi in the rhizospheres of conifer and broadleaf trees in urban parks. This will greatly enhance our knowledge of ECM fungal communities under urban stresses, and the findings can be utilized by urban planners to improve urban ecosystem services.