Browsing by Subject "ECOSYSTEM"

Sort by: Order: Results:

Now showing items 1-20 of 36
  • Tzoulas, Konstantinos; Galan, Juanjo; Venn, Stephen; Dennis, Matthew; Pedroli, Bas; Mishra, Himansu; Haase, Dagmar; Pauleit, Stephan; Niemelä, Jari; James, Philip (2021)
    This article provides a perspective on nature-based solutions. First, the argument is developed that nature-based solutions integrate social and ecological systems. Then, theoretical considerations relating to relational values, multifunctionality, transdisciplinarity, and polycentric governance are briefly outlined. Finally, a conceptual model of the social–ecological system of nature-based solutions is synthesised and presented. This conceptual model comprehensively defines the social and ecological external and internal systems that make up nature-based solutions, and identifies theoretical considerations that need to be addressed at different stages of their planning and implementation The model bridges the normative gaps of existing nature-based solution frameworks and could be used for consistent, comprehensive, and transferable comparisons internationally. The theoretical considerations addressed in this article inform practitioners, policymakers, and researchers about the essential components of nature-based solutions. The conceptual model can facilitate the identification of social and ecological interconnections within nature-based solutions and the range of stakeholders and disciplines involved.
  • Lappalainen, Hanna K.; Sevanto, Sanna; Dal Maso, Miikka; Taipale, Risto; Kajos, Maija; Kolari, Pasi; Back, Jaana (2013)
  • Amara, Edward; Adhikari, Hari; Heiskanen, Janne; Siljander, Mika; Munyao, Martha; Omondi, Patrick; Pellikka, Petri (2020)
    Savannahs provide valuable ecosystem services and contribute to continental and global carbon budgets. In addition, savannahs exhibit multiple land uses, e.g., wildlife conservation, pastoralism, and crop farming. Despite their importance, the effect of land use on woody aboveground biomass (AGB) in savannahs is understudied. Furthermore, fences used to reduce human-wildlife conflicts may affect AGB patterns. We assessed AGB densities and patterns, and the effect of land use and fences on AGB in a multi-use savannah landscape in southeastern Kenya. AGB was assessed with field survey and airborne laser scanning (ALS) data, and a land cover map was developed using Sentinel-2 satellite images in Google Earth Engine. The highest woody AGB was found in riverine forest in a conservation area and in bushland outside the conservation area. The highest mean AGB density occurred in the non-conservation area with mixed bushland and cropland (8.9 Mg center dot ha(-1)), while the lowest AGB density (2.6 Mg center dot ha(-1)) occurred in overgrazed grassland in the conservation area. The largest differences in AGB distributions were observed in the fenced boundaries between the conservation and other land-use types. Our results provide evidence that conservation and fences can create sharp AGB transitions and lead to reduced AGB stocks, which is a vital role of savannahs as part of carbon sequestration.
  • Vesala, Timo; Launiainen, Samuli; Kolari, Pasi; Pumpanen, Jukka; Sevanto, S.; Hari, Pertti; Nikinmaa, E.; Kaski, Petteri; Mannila, Heikki; Ukkonen, Esko; Piao, S. L.; Ciais, P. (2010)
  • Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko (2016)
    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4aEuro-m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketoneaEuro-+aEuro-methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9aEuro-mgaEuro-m(-2)aEuro-h(-1). Mixing ratios, recorded 4aEuro-m above the canopy, were dominated by methanol with a mean value of 6.2aEuro-ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7aEuro-mgaEuro-m(-2)aEuro-h(-1) was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.
  • Pihlajamäki, Mia-Elina; Helle, Inari; Haapasaari, Päivi; Sarkki, Simo; Kuikka, Sakari; Lehikoinen, Annukka (2020)
    Fisheries management aims to ensure that the fishing activities are environmentally sustainable in the long term, while also achieving the economic, social and food security related management objectives. To facilitate this, both the ecological and human dimensions of sustainability need to be included in fisheries assessment. In addition, assessing long-term sustainability calls for taking into account plausible changes in the surrounding societal conditions that shape the characteristics of the fisheries governance system, as well as the ecological conditions. The paper uses a combination of qualitative exploratory scenario storylines (ESS) and Bayesian belief networks (BBN) to integrate the environmental, economic, social and food security dimensions in an interdisciplinary assessment of the future sustainability of Baltic herring (Clupea harengus membras, Clupeidae) and salmon (Salmo salar, Salmonidae) fisheries. First, four alternative ESS were created based on plausible changes in societal drivers. The ESS were then formulated into a BBN to (a) visualize the assumed causalities, and (b) examine quantitatively how changes in the societal drivers affect the social-ecological fisheries system and ultimately the fisheries management objectives. This type of probabilistic scenario synthesis can help in thinking qualitative scenarios in a quantitative way. Moreover, it can increase understanding on the causal links between societal driving forces and the complex fisheries system and on how the management objectives can be achieved, thereby providing valuable information for strategic decision-making under uncertainty.
  • Kilpeläinen, A.; Strandman, H.; Grönholm, T.; Ikonen, V. -P.; Torssonen, P.; Kellomaki, S.; Peltola, H. (2017)
    We investigated how the initial age structure of a managed, middle boreal (62A degrees N), Norway spruce-dominated (Picea abies L. Karst.) forest area affects the net climate impact of using forest biomass for energy. The model-based analysis used a gap-type forest ecosystem model linked to a life cycle assessment (LCA) tool. The net climate impact of energy biomass refers to the difference in annual net CO2 exchange between the biosystem using forest biomass (logging residues from final felling) and the fossil (reference) system using coal. In the simulations over the 80-year period, the alternative initial age structures of the forest areas were (i) skewed to the right (dominated by young stands), (ii) normally distributed (dominated by middle-aged stands), (iii) skewed to the left (dominated by mature stands), and (iv) evenly distributed (same share of different age classes). The effects of management on net climate impacts were studied using current recommendations as a baseline with a fixed rotation period of 80 years. In alternative management scenarios, the volume of the growing stock was maintained 20% higher over the rotation compared to the baseline, and/or nitrogen fertilization was used to enhance carbon sequestration. According to the results, the initial age structure of the forest area affected largely the net climate impact of using energy biomass over time. An initially right-skewed age structure produced the highest climate benefits over the 80-year simulation period, in contrast to the left-skewed age structure. Furthermore, management that enhanced carbon sequestration increased the potential of energy biomass to replace coal, reducing CO2 emissions and enhancing climate change mitigation.
  • Zhao, Qingjian; Ding, Sheng; Wen, Zuomin; Toppinen, Anne (2019)
    In the context of global climate change, energy conservation and greenhouse effect gases (GHG) reduction are major challenges to mankind. The forestry-pulp and paper industry is a typical high energy consumption and high emission industry. We conducted in-depth research on the energy flows and carbon footprint of the forestry-pulp paper industry. The results show that: (1) The main sources of energy supply include external fossil fuel coal and internal biomass fuel black liquor, which supply 30,057,300 GJ and 14,854,000 GJ respectively; in addition, the energy produced by diesel in material transportation reaches 11,624,256 GJ. (2) The main energy consumption processes include auxiliary engineering projects, material transportation, papermaking, alkali recovery, pulping and other production workshops. The percentages of energy consumption account for 26%, 18%, 15%, 10% and 6%, respectively. (3) The main sources of carbon include coal and forest biomass, reaching 770,000 tons and 1.39 million tons, respectively. (4) Carbon emissions mainly occur in fuel combustion in combined heating and power (CHP) and diesel combustion in material transportation, reaching 6.78 million tons and 790,000 tons of carbon, respectively. (5) Based on steam and electricity consumption, the indirect carbon emissions of various thermal and electric energy production units were calculated, and the key energy consumption process units and hotspot carbon flow paths were further found. This research established a theoretical and methodological basis for energy conservation and emission reduction.
  • Candolin, Ulrika; Bertell, Elina; Kallio, Jarkko (2018)
    1. Alien species are altering ecosystems around the globe. To predict and manage their impacts, the underlying mechanisms need to be understood. This is challenging in ecosystems undergoing multiple disturbances as unexpected interactions can alter the impact of individual disturbances. Such interactions are likely to be common in disturbed ecosystems, but have so far received little attention. 2. We investigated whether interactions between an invading shrimp Palaemon elegans and another human-induced disturbance, the population growth of a native mesopredator, the threespine stickleback, influences a third human-induced disturbance, the increase in biomass of filamentous algae. Increases in both the native mesopredator population and algal biomass have been promoted by eutrophication and a trophic cascade triggered by declining predatory fish stocks. 3. We used mesocosm and field enclosure experiments, combined with analyses of long-term trends in the abundance of the invader and the native mesopredator, to dissect the influence of the two species on algal biomass when alone and when co-occurring. 4. The impact of the invader on algal biomass depended on the native mesopredator; shrimp on their own had no effect on algal growth, but mitigated algae accumulation when competing with the stickleback for resources. Competition caused the shrimp to shift its diet from grazers to algae, and its habitat choice from open to vegetated habitats. The native mesopredator, in contrast, increased algal biomass irrespective of the presence of the invader, by preying on grazers and inducing a trophic cascade. 5. Our results show that the presence of a native mesopredator causes an invader to alter its behaviour and thereby its ecological impact. This demonstrates that interactions between invaders and other anthropogenic disturbances can alter the ecological impact of invaders, and, notably, that the impact of invaders can be positive and stabilize disturbed ecosystems. These results stress the importance of considering interactions among disturbances when investigating the ecological impact of alien species.
  • Carstensen, Jacob; Conley, Daniel J.; Almroth-Rosell, Elin; Asmala, Eero; Bonsdorff, Erik; Fleming-Lehtinen, Vivi; Gustafsson, Bo G.; Gustafsson, Camilla; Heiskanen, Anna-Stiina; Janas, Urzsula; Norkko, Alf; Slomp, Caroline; Villnäs, Anna; Voss, Maren; Zilius, Mindaugas (2020)
    The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different biogeochemical processes altering nutrient and organic matter fluxes on the passage from land to sea. This review investigates the most important processes for removal of nutrients and organic matter, and the factors that regulate the efficiency of the coastal filter. Nitrogen removal through denitrification is high in lagoons receiving large inputs of nitrate and organic matter. Phosphorus burial is high in archipelagos with substantial sedimentation, but the stability of different burial forms varies across the Baltic Sea. Organic matter processes are tightly linked to the nitrogen and phosphorus cycles. Moreover, these processes are strongly modulated depending on composition of vegetation and fauna. Managing coastal ecosystems to improve the effectiveness of the coastal filter can reduce eutrophication in the open Baltic Sea.
  • Batllori, Enric; Lloret, Francisco; Aakala, Tuomas; Anderegg, William R. L.; Aynekulu, Ermias; Bendixsen, Devin P.; Bentouati, Abdallah; Bigler, Christof; Burk, C. John; Camarero, J. Julio; Colangelo, Michele; Coop, Jonathan D.; Fensham, Roderick; Floyd, M. Lisa; Galiano, Lucia; Ganey, Joseph L.; Gonzalez, Patrick; Jacobsen, Anna L.; Kane, Jeffrey Michael; Kitzberger, Thomas; Linares, Juan C.; Marchetti, Suzanne B.; Matusick, George; Michaelian, Michael; Navarro-Cerrillo, Rafael M.; Pratt, Robert Brandon; Redmond, Miranda D.; Rigling, Andreas; Ripullone, Francesco; Sanguesa-Barreda, Gabriel; Sasal, Yamila; Saura-Mas, Sandra; Suarez, Maria Laura; Veblen, Thomas T.; Vila-Cabrera, Albert; Vincke, Caroline; Ben Zeeman (2020)
    Forest vulnerability to drought is expected to increase under anthropogenic climate change, and drought-induced mortality and community dynamics following drought have major ecological and societal impacts. Here, we show that tree mortality concomitant with drought has led to short-term (mean 5 y, range 1 to 23 y after mortality) vegetation-type conversion in multiple biomes across the world (131 sites). Self-replacement of the dominant tree species was only prevalent in 21% of the examined cases and forests and woodlands shifted to nonwoody vegetation in 10% of them. The ultimate temporal persistence of such changes remains unknown but, given the key role of biological legacies in long-term ecological succession, this emerging picture of postdrought ecological trajectories highlights the potential for major ecosystem reorganization in the coming decades. Community changes were less pronounced under wetter postmortality conditions. Replacement was also influenced by management intensity, and postdrought shrub dominance was higher when pathogens acted as codrivers of tree mortality. Early change in community composition indicates that forests dominated by mesic species generally shifted toward more xeric communities, with replacing tree and shrub species exhibiting drier bioclimatic optima and distribution ranges. However, shifts toward more mesic communities also occurred and multiple pathways of forest replacement were observed for some species. Drought characteristics, species-specific environmental preferences, plant traits, and ecosystem legacies govern post drought species turnover and subsequent ecological trajectories, with potential far-reaching implications for forest biodiversity and ecosystem services.
  • Jansson, Anna; Klais-Peets, Riina; Griniene, Evelina; Rubene, Gunta; Semenova, Anna; Lewandowska, Aleksandra; Engstrom-Öst, Jonna (2020)
    Functional traits are becoming more common in the analysis of marine zooplankton community dynamics associated with environmental change. We used zooplankton groups with common functional properties to assess long-term trends in the zooplankton caused by certain environmental conditions in a highly eutrophicated gulf. Time series of zooplankton traits have been collected since the 1960s in the Gulf of Riga, Baltic Sea, and were analyzed using a combination of multivariate methods (principal coordinate analysis) and generalized additive models. One of the most significant changes was the considerable increase in the amount of the zooplankton functional groups (FGR) in coastal springtime communities, and dominance shifts from more complex to simpler organism groups-cladocerans and rotifers. The results also show that functional trait organism complexity (body size) decreased considerably due to cladoceran and rotifer increase following elevated water temperature. Salinity and oxygen had negligible effects on the zooplankton community.
  • Montiglio, P. O.; Gotanda, K. M.; Kratochwil, C. F.; Laskowski, K. L.; Farine, D. R. (2020)
    Because genes and phenotypes are embedded within individuals, and individuals within populations, interactions within one level of biological organization are inherently linked to interactors at others. Here, we expand the network paradigm to consider that nodes can be embedded within other nodes, and connections (edges) between nodes at one level of organization form "bridges" for connections between nodes embedded within them. Such hierarchically embedded networks highlight two central properties of biological systems: 1) processes occurring across multiple levels of organization shape connections among biological units at any given level of organization and 2) ecological effects occurring at a given level of organization can propagate up or down to additional levels. Explicitly considering the embedded structure of evolutionary and ecological networks can capture otherwise hidden feedbacks and generate new insights into key biological phenomena, ultimately promoting a broader understanding of interactions in evolutionary theory. Lay Summary: Interactions are ubiquitous across biological systems. Modeling their consequences requires capturing how units are organized across biological scales: gene and protein interactions shape phenotypic traits within individuals, individuals are embedded within populations, populations within communities, and communities within ecosystems. Doing so reveals how indirect connections among units arise from the structure of connections at higher or lower levels of organization, and how effects at one level of the network propagate across neighboring levels.
  • Herlevi, Heidi; Puntila, Riikka; Kuosa, Harri; Fagerholm, Hans-Peter (2017)
    Studies in the Baltic Sea have identified over 30 parasite taxa infecting the invasive round goby (Neogobius melanostomus (Pallas, 1814). In this study, we aimed at comparing parasite assemblages and infection rates (prevalence and intensity) in different populations across the invasive range in the Baltic Sea (Denmark, Lithuania, Estonia and Finland). Infection rates were 56-60% across all locations except Lithuania (28%). However, the parasite assemblages in the sampled populations were dissimilar, each location having unique parasites. In addition, many of the parasites were generalists commonly infecting native fish species. Based on the results of this study and those previously conducted in the Baltic Sea, the round goby has not retained parasites from its area of origin, but instead has been successively colonized by native generalist parasites. Although variable, overall parasite richness is still quite low around the Baltic compared to the native areas (34 vs 71 taxa, respectively). Also, prevalence and mean infection intensities in the Baltic Sea are significantly lower than in the native areas. Therefore, the invasion success of the round goby in the Baltic Sea can at least partly be attributed to enemy release, in this case shedding a significant proportion of their native parasite load.
  • Maeda, Eduardo; Abera, Temesgen; Siljander, Mika; Aragão, Luiz E. O. C.; Mendes de Moura, Yhasmin; Heiskanen, Janne (2021)
    In the Amazon rainforest, land use following deforestation is diverse and dynamic. Mounting evidence indicates that the climatic impacts of forest loss can also vary considerably, depending on specific features of the affected areas. The size of the deforested patches, for instance, was shown to modulate the characteristics of local climatic impacts. Nonetheless, the influence of different types of land use and management strategies on the magnitude of local climatic changes remains uncertain. Here, we evaluated the impacts of large-scale commodity farming and rural settlements on surface temperature, rainfall patterns, and energy fluxes. Our results reveal that changes in land-atmosphere coupling are induced not only by deforestation size but also, by land use type and management patterns inside the deforested areas. We provide evidence that, in comparison with rural settlements, deforestation caused by large-scale commodity agriculture is more likely to reduce convective rainfall and increase land surface temperature. We demonstrate that these differences are mainly caused by a more intensive management of the land, resulting in significantly lower vegetation cover throughout the year, which reduces latent heat flux. Our findings indicate an urgent need for alternative agricultural practices, as well as forest restoration, for maintaining ecosystem processes and mitigating change in the local climates across the Amazon basin.
  • Andersen, Jesper H.; Carstensen, Jacob; Conley, Daniel J.; Dromph, Karsten; Fleming-Lehtinen, Vivi; Gustafsson, Bo G.; Josefson, Alf B.; Norkko, Alf; Villnäs, Anna; Murray, Ciaran (2017)
    Much of the Baltic Sea is currently classified as 'affected by eutrophication'. The causes for this are twofold. First, current levels of nutrient inputs (nitrogen and phosphorus) from human activities exceed the natural processing capacity with an accumulation of nutrients in the Baltic Sea over the last 50-100 years. Secondly, the Baltic Sea is naturally susceptible to nutrient enrichment due to a combination of long retention times and stratification restricting ventilation of deep waters. Here, based on a unique data set collated from research activities and long-term monitoring programs, we report on the temporal and spatial trends of eutrophication status for the open Baltic Sea over a 112-year period using the HELCOM Eutrophication Assessment Tool (HEAT 3.0). Further, we analyse variation in the confidence of the eutrophication status assessment based on a systematic quantitative approach using coefficients of variation in the observations. The classifications in our assessment indicate that the first signs of eutrophication emerged in the mid-1950s and the central parts of the Baltic Sea changed from being unaffected by eutrophication to being affected. We document improvements in eutrophication status that are direct consequences of long-term efforts to reduce the inputs of nutrients. The reductions in both nitrogen and phosphorus loads have led to large-scale alleviation of eutrophication and to a healthier Baltic Sea. Reduced confidence in our assessment is seen more recently due to reductions in the scope of monitoring programs. Our study sets a baseline for implementation of the ecosystem-based management strategies and policies currently in place including the EU Marine Strategy Framework Directives and the HELCOM Baltic Sea Action Plan.
  • Mõttus, Matti; Hernandez-Clemente, Rocio; Perheentupa, Viljami; Markiet, Vincent; Aalto, Juho; Bäck, Jaana; Nichol, Caroline J. (2018)
  • Kotta, Jonne; Kotta, Ilmar; Bick, Andreas; Bastrop, Ralf; Väinölä, Risto (2015)
    An as-yet-undescribed, non-indigenous polychaete species was found at very high densities in the eastern part of the Baltic Sea in Estonia in 2012. The species belongs to the sabellid genus Laonome Malmgren, 1866, but it could not be assigned to any of the previously described species. To date, the species has established a stable population after surviving a notably cold winter (2012/2013). To study the local distribution and abundance of the species, a spatial grid with some stations repeated seasonally and interannually was sampled in a quantitative manner. Based of the survey data and available environmental data, the variables that contributed significantly to explaining variation in the abundance of the polychaete were determined using the Boosted Regression Trees modelling approach. Molecular barcodes to characterize the identity of the species were also established. The abundance of Laonome sp. exhibited strong seasonal variation, peaking between July and November. Besides seasonality, the quantity of decomposed microalgae in the sediment and wave exposure best explained the variation in abundance. Laonome sp. is now well-established in the Baltic Sea and locally reached high densities in low salinity areas. This non-indigenous polychaete may potentially modify sediment morphology and chemistry and disrupt the natural infaunal communities. Laonome sp. could displace or even completely eliminate some species currently present in the study area and beyond if it spreads; however, it could also facilitate currently-present species through the provision of alternative substrate and/or food. Given its persistence and high abundance in Parnu Bay, colonization of other low-salinity areas of the Baltic Sea can be expected.
  • Kasimir, Å; He, H.; Jansson, P-E; Lohila, A.; Minkkinen, K. (2021)
    Nutrient-rich peat soils have previously been demonstrated to lose carbon despite higher photosynthesis and litter production compared to nutrient-poor soils, where instead carbon accumulates. To understand this phenomenon, we used a process-oriented model (CoupModel) calibrated on data from two closely located drained peat soil sites in boreal forests in Finland, Kalevansuo and Lettosuo, with different soil C/N ratios. Uncertainty-based calibrations were made using eddy-covariance data (hourly values of net ecosystem exchange) and tree growth data. The model design used two forest scenarios on drained peat soil, one nutrient-poor with dense moss cover and another with lower soil C/N ratio with sparse moss cover. Three vegetation layers were assumed: conifer trees, other vascular plants, and a bottom layer with mosses. Adding a moss layer was a new approach, because moss has a modified physiology compared to vascular plants. The soil was described by three separate soil organic carbon (SOC) pools consisting of vascular plants and moss litter origin and decomposed organic matter. Over 10 years, the model demonstrated a similar photosynthesis rate for the two scenarios, 903 and 1,034 g C m(-2) yr(-1), for the poor and rich site respectively, despite the different vegetation distribution. For the nutrient-rich scenario more of the photosynthesis produce accumulated as plant biomass due to more trees, while the poor site had abundant moss biomass which did not increase living aboveground biomass to the same degree. Instead, the poor site showed higher litter inputs, which compared with litter from vascular plants had low turnover rates. The model calibration showed that decomposition rate coefficients for the three SOC pools were similar for the two scenarios, but the high quantity of moss litter input with low decomposability for the nutrient poor scenario explained the major difference in the soil carbon balance. Vascular plant litter declined with time, while SOC pools originating from mosses accumulated with time. Large differences between the scenarios were obtained during dry spells where soil heterotrophic respiration doubled for the nutrient-rich scenario, where vascular plants dominated, owing to a larger water depletion by roots. Where moss vegetation dominated, the heterotrophic respiration increased by only 50% during this dry period. We suggest moss vegetation is key for carbon accumulation in the poor soil, adding large litter quantities with a resistant quality and less water depletion than vascular plants during dry conditions.
  • Savi, Flavia; Nemitz, Eiko; Coyle, Mhairi; Aitkenhead, Matt; Frumau, Kfa; Gerosa, Giacomo; Finco, Angelo; Gruening, Carten; Goded, Ignacio; Loubet, Benjamin; Stella, Patrick; Ruuskanen, Taina; Weidinger, T.; Horvath, L.; Zenone, Terenzio; Fares, Silvano (2020)
    Tropospheric ozone (O-3) is probably the air pollutant most damaging to vegetation. Understanding how plants respond to O(3)pollution under different climate conditions is of central importance for predicting the interactions between climate change, ozone impact and vegetation. This work analyses the effect of O(3)fluxes on net ecosystem productivity (NEP), measured directly at the ecosystem level with the eddy covariance (EC) technique. The relationship was explored with artificial neural networks (ANNs), which were used to model NEP using environmental and phenological variables as inputs in addition to stomatal O(3)uptake in Spring and Summer, when O(3)pollution is expected to be highest. A sensitivity analysis allowed us to isolate the effect of O-3, visualize the shape of the O-3-NEP functional relationship and explore how climatic variables affect NEP response to O-3. This approach has been applied to eleven ecosystems covering a range of climatic areas. The analysis highlighted that O(3)effects over NEP are highly non-linear and site-specific. A significant but small NEP reduction was found during Spring in a Scottish shrubland (-0.67%), in two Italian forests (up to -1.37%) and during Summer in a Californian orange orchard (-1.25%). Although the overall seasonal effect of O(3)on NEP was not found to be negative for the other sites, with episodic O(3)detrimental effect still identified. These episodes were correlated with meteorological variables showing that O(3)damage depends on weather conditions. By identifying O(3)damage under field conditions and the environmental factors influencing to that damage, this work provides an insight into O(3)pollution, climate and weather conditions.