Browsing by Subject "EDDY-COVARIANCE"

Sort by: Order: Results:

Now showing items 1-5 of 5
  • Flechard, Chris R.; Ibrom, Andreas; Skiba, Ute M.; de Vries, Wim; van Oijen, Marcel; Cameron, David R.; Dise, Nancy B.; Korhonen, Janne F. J.; Buchmann, Nina; Legout, Arnaud; Simpson, David; Sanz, Maria J.; Aubinet, Marc; Loustau, Denis; Montagnani, Leonardo; Neirynck, Johan; Janssens, Ivan A.; Pihlatie, Mari; Kiese, Ralf; Siemens, Jan; Francez, Andre-Jean; Augustin, Juergen; Varlagin, Andrej; Olejnik, Janusz; Juszczak, Radoslaw; Aurela, Mika; Berveiller, Daniel; Chojnicki, Bogdan H.; Dammgen, Ulrich; Delpierre, Nicolas; Djuricic, Vesna; Drewer, Julia; Dufrene, Eric; Eugster, Werner; Fauvel, Yannick; Fowler, David; Frumau, Arnoud; Granier, Andre; Gross, Patrick; Hamon, Yannick; Helfter, Carole; Hensen, Arjan; Horvath, Laszlo; Kitzler, Barbara; Kruijt, Bart; Kutsch, Werner L.; Lobo-do-Vale, Raquel; Lohila, Annalea; Longdoz, Bernard; Marek, Michal; Matteucci, Giorgio; Mitosinkova, Marta; Moreaux, Virginie; Neftel, Albrecht; Ourcival, Jean-Marc; Pilegaard, Kim; Pita, Gabriel; Sanz, Francisco; Schjoerring, Jan K.; Sebastia, Maria-Teresa; Tang, Y. Sim; Uggerud, Hilde; Urbaniak, Marek; van Dijk, Netty; Vesala, Timo; Vidic, Sonja; Vincke, Caroline; Weidinger, Tamas; Zechmeister-Boltenstern, Sophie; Butterbach-Bah, Klaus; Nemitz, Eiko; Sutton, Mark A. (2020)
    The impact of atmospheric reactive nitrogen (N-r) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC/dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of N-r deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet N-r deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and N-r inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BAS-FOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from -70 to 826 gCm(-2) yr(-1) at total wet + dry inorganic N-r deposition rates (N-dep) of 0.3 to 4.3 gNm(-2) yr(-1) and from -4 to 361 g Cm-2 yr(-1) at N-dep rates of 0.1 to 3.1 gNm(-2) yr(-1) in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated N-dep where N-r leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N-2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27%(range 6 %-54 %) of N-dep at sites with N-dep <1 gNm(-2) yr(-1) versus 65% (range 35 %-85 %) for N-dep > 3 gNm(-2) yr(-1). Such large levels of N-r loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with N-r deposition up to 2-2.5 gNm(-2) yr(-1), with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP/GPP ratio). At elevated N-dep levels (> 2.5 gNm(-2) yr(-1)), where inorganic N-r losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate N-dep levels was partly the result of geographical cross-correlations between N-dep and climate, indicating that the actual mean dC/dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. N-dep.
  • Mander, Ulo; Krasnova, Alisa; Escuer-Gatius, Jordi; Espenberg, Mikk; Schindler, Thomas; Machacova, Katerina; Parn, Jaan; Maddison, Martin; Megonigal, J. Patrick; Pihlatie, Mari; Kasak, Kuno; Niinemets, Ulo; Junninen, Heikki; Soosaar, Kaido (2021)
    Riparian forests are known as hot spots of nitrogen cycling in landscapes. Climate warming speeds up the cycle. Here we present results from a multi-annual high temporal-frequency study of soil, stem, and ecosystem (eddy covariance) fluxes of N2O from a typical riparian forest in Europe. Hot moments (extreme events of N2O emission) lasted a quarter of the study period but contributed more than half of soil fluxes. We demonstrate that high soil emissions of N2O do not escape the ecosystem but are processed in the canopy. Rapid water content change across intermediate soil moisture was a major determinant of elevated soil emissions in spring. The freeze-thaw period is another hot moment. However, according to the eddy covariance measurements, the riparian forest is a modest source of N2O. We propose photochemical reactions and dissolution in canopy-space water as reduction mechanisms.
  • Marshall, John D.; Laudon, Hjalmar; Makela, Annikki; Peichl, Matthias; Hasselquist, Niles; Nasholm, Torgny (2021)
    Forests pass water and carbon through while converting portions to streamflow, soil organic matter, wood production, and other ecosystem services. The efficiencies of these transfers are but poorly quantified. New theory and new instruments have made it possible to use stable isotope composition to provide this quantification of efficiencies wherever there is a measurable difference between the branches of a branchpoint. We present a linked conceptual model that relies on isotopes of hydrogen, carbon, and oxygen to describe these branchpoints along the pathway from precipitation to soil and biomass carbon sequestration and illustrate how it can be tested and generalized. Plain Language Summary The way a forest works can be described in terms of carbon and water budgets, which describe the ways that carbon and water flow through the forest. The paths of such flows are frequently branched and the branches are often different in their stable isotope composition. This means that stable isotopes can be used to describe the branching events. We present isotopic methods of quantifying several such events, then link them in a chain that begins with the evaporation of water and ends with biomass production.
  • Schallhart, Simon; Rantala, Pekka Antti Ilmari; Kajos, Maija Karoliina; Aalto, Juho Antton; Mammarella, Ivan; Ruuskanen, Taina Maria; Kulmala, Markku Tapio (2018)
    Between April and June 2013 fluxes of volatile organic compounds (VOCs) were measured in a Scots pine and Norway spruce forest using the eddy covariance (EC) method with a proton transfer reaction time-of-flight (PTR-TOF) mass spectrometer. The observations were performed above a boreal forest at the SMEAR II site in southern Finland. We found a total of 25 different compounds with exchange and investigated their seasonal variations from spring to summer. The majority of the net VOC flux was comprised of methanol, monoterpenes, acetone and butene + butanol. The butene + butanol emissions were concluded to not originate from the forest and, therefore, be anthropogenic. The VOC exchange followed a seasonal trend and the emissions increased from spring to summer. Only three compounds were emitted during the snowmelt while in summer emissions of some 19 VOCs were observed. During the measurement period in April, the emissions were dominated by butene + butanol, while during the start of the growing season and in summer, methanol was the most emitted compound. The main source of methanol was likely the growth of new biomass. During a 21-day period in June, the net VOC flux was 2.1 nmolm 2 s(-1). This is on the lower end of PTR-TOF flux measurements from other ecosystems, which range from 2 to 10 nmolm 2 s(-1). The EC flux results were compared with surface layer profile measurements, using a proton transfer reaction quadrupole mass spectrometer, which is perman
  • Reyer, Christopher P. O.; Gonzalez, Ramiro Silveyra; Dolos, Klara; Hartig, Florian; Hauf, Ylva; Noack, Matthias; Lasch-Born, Petra; Roetzer, Thomas; Pretzsch, Hans; Meesenburg, Henning; Fleck, Stefan; Wagner, Markus; Bolte, Andreas; Sanders, Tanja G. M.; Kolari, Pasi; Makela, Annikki; Vesala, Timo; Mammarella, Ivan; Pumpanen, Jukka; Collalti, Alessio; Trotta, Carlo; Matteucci, Giorgio; D'Andrea, Ettore; Foltynova, Lenka; Krejza, Jan; Ibrom, Andreas; Pilegaard, Kim; Loustau, Denis; Bonnefond, Jean-Marc; Berbigier, Paul; Picart, Delphine; Lafont, Sebastien; Dietze, Michael; Cameron, David; Vieno, Massimo; Tian, Hanqin; Palacios-Orueta, Alicia; Cicuendez, Victor; Recuero, Laura; Wiese, Klaus; Buechner, Matthias; Lange, Stefan; Volkholz, Jan; Kim, Hyungjun; Horemans, Joanna A.; Bohn, Friedrich; Steinkamp, Joerg; Chikalanov, Alexander; Weedon, Graham P.; Sheffield, Justin; Babst, Flurin; del Valle, Iliusi Vega; Suckow, Felicitas; Martel, Simon; Mahnken, Mats; Gutsch, Martin; Frieler, Katja (2020)
    Process-based vegetation models are widely used to predict local and global ecosystem dynamics and climate change impacts. Due to their complexity, they require careful parameterization and evaluation to ensure that projections are accurate and reliable. The PROFOUND Database (PROFOUND DB) provides a wide range of empirical data on European forests to calibrate and evaluate vegetation models that simulate climate impacts at the forest stand scale. A particular advantage of this database is its wide coverage of multiple data sources at different hierarchical and temporal scales, together with environmental driving data as well as the latest climate scenarios. Specifically, the PROFOUND DB provides general site descriptions, soil, climate, CO2, nitrogen deposition, tree and forest stand level, and remote sensing data for nine contrasting forest stands distributed across Europe. Moreover, for a subset of five sites, time series of carbon fluxes, atmospheric heat conduction and soil water are also available. The climate and nitrogen deposition data contain several datasets for the historic period and a wide range of future climate change scenarios following the Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, RCP8.5). We also provide pre-industrial climate simulations that allow for model runs aimed at disentangling the contribution of climate change to observed forest productivity changes. The PROFOUND DB is available freely as a "SQLite" relational database or "ASCII" flat file version (at https://doi.org/10.5880/PIK.2020.006/; Reyer et al., 2020). The data policies of the individual contributing datasets are provided in the metadata of each data file. The PROFOUND DB can also be accessed via the ProfoundData R package (https://CRAN.R- project.org/package=ProfoundData; Silveyra Gonzalez et al., 2020), which provides basic functions to explore, plot and extract the data for model set-up, calibration and evaluation.