Browsing by Subject "EMBOLISM"

Sort by: Order: Results:

Now showing items 1-3 of 3
  • Bajc, M.; Chen, Y.; Wang, J.; Li, X. Y.; Shen, W. M.; Wang, C. Z.; Huang, H.; Lindqvist, A.; He, X. Y. (2017)
    Introduction: Airway obstruction and possible concomitant pulmonary diseases in COPD cannot be identified conventionally with any single diagnostic tool. We aimed to diagnose and grade COPD severity and identify pulmonary comorbidities associated with COPD with ventilation/perfusion single-photon emission computed tomography (V/P SPECT) using Technegas as the functional ventilation imaging agent. Methods: 94 COPD patients (aged 43-86 years, Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages I-IV) were examined with V/P SPECT and spirometry. Ventilation and perfusion defects were analyzed blindly according to the European guidelines. Penetration grade of Technegas in V SPECT measured the degree of obstructive small airways disease. Total preserved lung function and penetration grade of Technegas in V SPECT were assessed by V/P SPECT and compared to GOLD stages and spirometry. Results: Signs of small airway obstruction in the ventilation SPECT images were found in 92 patients. Emphysema was identified in 81 patients. Two patients had no signs of COPD, but both of them had a pulmonary embolism, and in one of them we also suspected a lung tumor. The penetration grade of Technegas in V SPECT and total preserved lung function correlated significantly to GOLD stages (r=0.63 and -0.60, respectively, P <0.0001). V/P SPECT identified pulmonary embolism in 30 patients (32%). A pattern typical for heart failure was present in 26 patients (28%). Parenchymal changes typical for pneumonia or lung tumor were present in several cases. Conclusion: V/P SPECT, using Technegas as the functional ventilation imaging agent, is a new tool to diagnose COPD and to grade its severity. Additionally, it revealed heterogeneity of COPD caused by pulmonary comorbidities. The characteristics of these comorbidities suggest their significant impact in clarifying symptoms, and also their influence on the prognosis.
  • DeSoto, Lucia; Cailleret, Maxime; Sterck, Frank; Jansen, Steven; Kramer, Koen; Robert, Elisabeth M. R.; Aakala, Tuomas; Amoroso, Mariano M.; Bigler, Christof; Camarero, J. Julio; Cufar, Katarina; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Heres, Ana-Maria; Kane, Jeffrey M.; Kharuk, Vyacheslav; Kitzberger, Thomas; Klein, Tamir; Levanic, Tom; Linares, Juan C.; Makinen, Harri; Oberhuber, Walter; Papadopoulos, Andreas; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Stojanovic, Dejan B.; Suarez, Maria Laura; Villalba, Ricardo; Martinez-Vilalta, Jordi (2020)
    Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.
  • Lintunen, Anna; Losso, Adriano; Aalto, Juho; Chan, Tommy; Hölttä, Teemu; Mayr, Stefan (2020)
    Ice formation and propagation in the xylem of plants is a complex process. During freezing of xylem sap, gases dissolved in liquid sap are forced out of the ice lattice due to their low solubility in ice, and supersaturation of xylem sap as well as low water potential (Psi) are induced at the ice-liquid interface. Supersaturation of gases near the ice front may lead to bubble formation and potentially to cavitation and/or to burst of gases driven out from the branch. In this study, we investigated the origin and dynamics of freezing-related gas bursts and ultrasonic acoustic emissions (AEs), which are suggested to indicate cavitation. Picea abies (L.) H. Karst. and Salix caprea L. branch segments were exposed to frost cycles in a temperature test chamber, and CO2 efflux (indicating gas bursts) and AEs were recorded. On freezing, two-thirds of the observed gas bursts originated from the xylem and only one-third from the bark. Simultaneously with gas bursts, AEs were detected. Branch Psi affected both gas bursts and AEs, with high gas burst in saturated and dry samples but relevant AEs only in the latter. Repeated frost cycles led to decreasing gas burst volumes and AE activity. Experiments revealed that the expanding ice front in freezing xylem was responsible for observed gas bursts and AEs, and that branch Psi influenced both processes. Results also indicated that gas bursts and cavitation are independently induced by ice formation, though both may be relevant for bubble dynamics during freezing.