Browsing by Subject "ENDOPLASMIC-RETICULUM STRESS"

Sort by: Order: Results:

Now showing items 1-20 of 45
  • Hentila, Jaakko; Nissinen, Tuuli A.; Korkmaz, Ayhan; Lensu, Sanna; Silvennoinen, Mika; Pasternack, Arja; Ritvos, Olli; Atalay, Mustafa; Hulmi, Juha J. (2019)
    Muscle wasting in cancer cachexia can be alleviated by blocking activin receptor type 2 (ACVR2) ligands through changes in protein synthesis/degradation. These changes in cellular and protein metabolism may alter protein homeostasis. First, we elucidated the acute (1-2 days) and 2-week effects of blocking ACVR2 ligands by soluble activin receptor 2B (sACVR2B-Fc) on unfolded protein response (UPR), heat shock proteins (HSPs) and redox balance in a healthy mouse skeletal muscle. Second, we examined UPR, autophagy and redox balance with or without sACVR2B-Fc administration in muscle and liver of C26 tumor-bearing mice. The indicators of UPR and HSPs were not altered 1-2 days after a single sACVR2B-Fc administration in healthy muscles, but protein carbonyls increased (p <0.05). Two weeks of sACVR2B-Fc administration increased muscle size, which was accompanied by increased UPR markers: GRP78 <0.05), phosphorylated elF2 alpha <0.01) and HSP47 (p <0.01). Additionally, protein carbonyls and reduced form of glutathione increased (GSH) (p <0.05). On the other hand, C26 cancer cachexia manifested decreased UPR markers (p-elF2 alpha, HSP47, p-JNK; p <0.05) and antioxidant GSH (p <0.001) in muscle, whereas the ratio of oxidized to reduced glutathione increased (GSSG/GSH; p <0.001). Administration of sACVR2B-Fc prevented the decline in GSH and increased some of the UPR indicators in tumor-bearing mice. Additionally, autophagy markers LC3II/I (p <0.05), Beclin-1 (p <0.01), and P62 (p <0.05) increased in the skeletal muscle of tumor-bearing mice. Finally, indicators of UPR, PERK, p-elF2 alpha and GRP78, increased (p <0.05), whereas ATF4 was strongly decreased (p <0.01) in the liver of tumor-bearing mice while sACVR2B-Fc had no effect. Muscle GSH and many of the altered UPR indicators correlated with tumor mass, fat mass and body mass loss. In conclusion, experimental cancer cachexia is accompanied by distinct and tissue-specific changes in proteostasis. Muscle hypertrophy induced by blocking ACVR2B ligands may be accompanied by the induction of UPR and increased protein carbonyls but blocking ACVR2B ligands may upregulate antioxidant protection.
  • Huttunen, Henri J.; Saarma, Mart (2019)
    Neurotrophic factors (NTF) are a subgroup of growth factors that promote survival and differentiation of neurons. Due to their neuroprotective and neurorestorative properties, their therapeutic potential has been tested in various neurodegenerative diseases. Bioavailability of NTFs in the target tissue remains a major challenge for NTF-based therapies. Various intracerebral delivery approaches, both protein and gene transfer-based, have been tested with varying outcomes. Three growth factors, glial cell-line derived neurotrophic factor (GDNF), neurturin (NRTN) and platelet-derived growth factor (PDGF-BB) have been tested in clinical trials in Parkinson?s Disease (PD) during the past 20 years. A new protein can now be added to this list, as cerebral dopamine neurotrophic factor (CDNF) has recently entered clinical trials. Despite their misleading names, CDNF, together with its closest relative mesencephalic astrocyte-derived neurotrophic factor (MANF), form a novel family of unconventional NTF that are both structurally and mechanistically distinct from other growth factors. CDNF and MANF are localized mainly to the lumen of endoplasmic reticulum (ER) and their primary function appears to be modulation of the unfolded protein response (UPR) pathway. Prolonged ER stress, via the UPR signaling pathways, contributes to the pathogenesis in a number of chronic degenerative diseases, and is an important target for therapeutic modulation. Intraputamenally administered recombinant human CDNF has shown robust neurorestorative effects in a number of small and large animal models of PD, and had a good safety profile in preclinical toxicology studies. Intermittent monthly bilateral intraputamenal infusions of CDNF are currently being tested in a randomized placebo-controlled phase I?II clinical study in moderately advanced PD patients. Here, we review the history of growth factor-based clinical trials in PD, and discuss how CDNF differs from the previously tested growth factors.
  • Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Köks, Sulev; Raasmaja, Atso (2016)
    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.
  • Lindholm, Päivi; Saarma, Mart (2022)
    Midbrain dopamine neurons deteriorate in Parkinson's disease (PD) that is a progressive neurodegenerative movement disorder. No cure is available that would stop the dopaminergic decline or restore function of injured neurons in PD. Neurotrophic factors (NTFs), e.g., glial cell line-derived neurotrophic factor (GDNF) are small, secreted proteins that promote neuron survival during mammalian development and regulate adult neuronal plasticity, and they are studied as potential therapeutic agents for the treatment of neurodegenerative diseases. However, results from clinical trials of GDNF and related NTF neurturin (NRTN) in PD have been modest so far. In this review, we focus on cerebral dopamine neurotrophic factor (CDNF), an unconventional neurotrophic protein. CDNF delivered to the brain parenchyma protects and restores dopamine neurons in animal models of PD. In a recent Phase I-II clinical trial CDNF was found safe and well tolerated. CDNF deletion in mice led to age-dependent functional changes in the brain dopaminergic system and loss of enteric neurons resulting in slower gastrointestinal motility. These defects in Cdnf(-/-) mice intriguingly resemble deficiencies observed in early stage PD. Different from classical NTFs, CDNF can function both as an extracellular trophic factor and as an intracellular, endoplasmic reticulum (ER) luminal protein that protects neurons and other cell types against ER stress. Similarly to the homologous mesencephalic astrocyte-derived neurotrophic factor (MANF), CDNF is able to regulate ER stress-induced unfolded protein response (UPR) signaling and promote protein homeostasis in the ER. Since ER stress is thought to be one of the pathophysiological mechanisms contributing to the dopaminergic degeneration in PD, CDNF, and its small-molecule derivatives that are under development may provide useful tools for experimental medicine and future therapies for the treatment of PD and other neurodegenerative protein-misfolding diseases.
  • Wang, Liang; Li, Menglu; Bu, Qian; Li, Hongchun; Xu, Wei; Liu, Chunqi; Gu, Hui; Zhang, Jiamei; Wan, Xuemei; Zhao, Yinglan; Cen, Xiaobo (2019)
    Much efforts have been tried to clarify the molecular mechanism of alcohol-induced brain damage from the perspective of genome and protein; however, the effect of chronic alcohol exposure on global lipid profiling of brain is unclear. In the present study, by using Q-TOF/MS-based lipidomics approach, we investigated the comprehensive lipidome profiling of brain from the rats orally administrated with alcohol daily, continuously for one year. Through systematically analysis of all lipids in prefrontal cortex (PFC) and striatum region, we found that long-term alcohol exposure profoundly modified brain lipidome profiling. Notably, three kinds of lipid classes, glycerophospholipid (GP), glycerolipid (GL) and fatty acyls (FA), were significantly increased in these two brain regions. Interestingly, most of the modified lipids were involved in synthetic pathways of endoplasmic reticulum (ER), which may result in ER stress-related metabolic disruption. Moreover, alcohol-modified lipid species displayed long length of carbon chain with high degree of unsaturation. Taken together, our results firstly present that chronic alcohol exposure markedly modifies brain lipidomic profiling, which may activate ER stress and eventually result in neurotoxicity. These findings provide a new insight into the mechanism of alcohol-related brain damage.
  • Goldsteins, Gundars; Hakosalo, Vili; Jaronen, Merja; Keuters, Meike Hedwig; Lehtonen, Sarka; Koistinaho, Jari (2022)
    A single paragraph of about 200 words maximum. Neurodegenerative diseases (ND), such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, pose a global challenge in the aging population due to the lack of treatments for their cure. Despite various disease-specific clinical symptoms, ND have some fundamental common pathological mechanisms involving oxidative stress and neuroinflammation. The present review focuses on the major causes of central nervous system (CNS) redox homeostasis imbalance comprising mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Mitochondrial disturbances, leading to reduced mitochondrial function and elevated reactive oxygen species (ROS) production, are thought to be a major contributor to the pathogenesis of ND. ER dysfunction has been implicated in ND in which protein misfolding evidently causes ER stress. The consequences of ER stress ranges from an increase in ROS production to altered calcium efflux and proinflammatory signaling in glial cells. Both pathological pathways have links to ferroptotic cell death, which has been implicated to play an important role in ND. Pharmacological targeting of these pathological pathways may help alleviate or slow down neurodegeneration.
  • Lim, Soo; Taskinen, Marja-Riitta; Boren, Jan (2019)
    Nonalcoholic fatty liver disease (NAFLD) is a chronic condition characterized by fat accumulation combined with low-grade inflammation in the liver. A large body of clinical and experimental data shows that increased flux of free fatty acids from increased visceral adipose tissue and de novo lipogenesis can lead to NAFLD and insulin resistance. Thus, individuals with obesity, insulin resistance, and dyslipidaemia are at the greatest risk of developing NAFLD. Conversely, NAFLD is a phenotype of cardiometabolic syndrome. Notably, researchers have discovered a close association between NAFLD and impaired glucose metabolism and focused on the role of NAFLD in the development of type 2 diabetes. Moreover, recent studies provide substantial evidence for an association between NAFLD and atherosclerosis and cardiometabolic disorders. Even if NAFLD can progress into severe liver disorders including nonalcoholic steatohepatitis (NASH) and cirrhosis, the majority of subjects with NAFLD die from cardiovascular disease eventually. In this review, we propose a potential pathological link between NAFLD/NASH and cardiometabolic syndrome. The potential factors that can play a pivotal role in this link, such as inflammation, insulin resistance, alteration in lipid metabolism, oxidative stress, genetic predisposition, and gut microbiota are discussed.
  • Lindholm, Dan; Mäkelä, Johanna; Di Liberto, Valentina; Mudo, Giuseppa; Belluardo, Natale; Eriksson-Rosenberg, Ove; Saarma, Mart (2016)
    Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
  • Lehtonen, Sarka; Sonninen, Tuuli-Maria; Wojciechowski, Sara; Goldsteins, Gundars; Koistinaho, Jari (2019)
    Despite decades of research, current therapeutic interventions for Parkinson's disease (PD) are insufficient as they fail to modify disease progression by ameliorating the underlying pathology. Cellular proteostasis (protein homeostasis) is an essential factor in maintaining a persistent environment for neuronal activity. Proteostasis is ensured by mechanisms including regulation of protein translation, chaperone-assisted protein folding and protein degradation pathways. It is generally accepted that deficits in proteostasis are linked to various neurodegenerative diseases including PD. While the proteasome fails to degrade large protein aggregates, particularly alpha-synuclein (alpha-SYN) in PD, drug-induced activation of autophagy can efficiently remove aggregates and prevent degeneration of dopaminergic (DA) neurons. Therefore, maintenance of these mechanisms is essential to preserve all cellular functions relying on a correctly folded proteome. The correlations between endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway are well-established. However, while mild insults increase the activity of chaperones, prolonged cell stress, or insufficient adaptive response causes cell death. Modulating the activity of molecular chaperones, such as protein disulfide isomerase which assists refolding and contributes to the removal of unfolded proteins, and their associated pathways may offer a new approach for disease-modifying treatment. Here, we summarize some of the key concepts and emerging ideas on the relation of protein aggregation and imbalanced proteostasis with an emphasis on PD as our area of main expertise. Furthermore, we discuss recent insights into the strategies for reducing the toxic effects of protein unfolding in PD by targeting the ER UPR pathway.
  • Hulmi, Juha J.; Hentila, Jaakko; DeRuisseau, Keith C.; Oliveira, Bernardo M.; Papaioannou, Konstantinos G.; Autio, Reija; Kujala, Urho M.; Ritvos, Olli; Kainulainen, Heikki; Korkmaz, Ayhan; Atalay, Mustafa (2016)
    Protein homeostasis in cells, proteostasis, is maintained through several integrated processes and pathways and its dysregulation may mediate pathology in many diseases including Duchenne muscular dystrophy (DMD). Oxidative stress, heat shock proteins, endoplasmic reticulum (ER) stress and its response, i.e. unfolded protein response (UPR), play key roles in proteostasis but their involvement in the pathology of DMD are largely unknown. Moreover, exercise and activin receptor IIB blocking are two strategies that may be beneficial to DMD muscle, but studies to examine their effects on these proteostasis pathways are lacking. Therefore, these pathways were examined in the muscle of mdx mice, a model of DMD, under basal conditions and in response to seven weeks of voluntary exercise and/or activin receptor IIB ligand blocking using soluble activin receptor-Fc (sAcvR2B-Fc) administration. In conjunction with reduced muscle strength, mdx muscle displayed greater levels of UPR/ER-pathway indicators including greater protein levels of IREloc, PERK and Atf6b mRNA. Downstream to IREloc and PERK, spliced Xbpl mRNA and phosphorylation of elF2oc, were also increased. Most of the cytoplasmic and ER chaperones and mitochondrial UPR markers were unchanged in mdx muscle. Oxidized glutathione was greater in mdx and was associated with increases in lysine acetylated proteome and phosphorylated sirtuin 1. Exercise increased oxidative stress when performed independently or combined with sAcvR2B-Fc administration. Although neither exercise nor sAcvR2B-Fc administration imparted a clear effect on ER stress/UPR pathways or heat shock proteins, sAcvR2B-Fc administration increased protein expression levels of GRP78/BiP, a triggering factor for ER stress/UPR activation and TxNIP, a redox-regulator of ER stress-induced inflammation. In conclusion, the ER stress and UPR are increased in mdx muscle. However, these processes are not distinctly improved by voluntary exercise or blocking activin receptor IIB ligands and thus do not appear to be optimal therapeutic choices for improving proteostasis in DMD. (C) 2016 Elsevier Inc. All rights reserved.
  • Danilova, Tatiana; Lindahl, Maria (2018)
    Mesencephalic astrocyte-derived neurotrophic factor (MANF) was originally identified as a secreted trophic factor for dopamine neurons in vitro. It protects and restores damaged cells in rodent models of Parkinson's disease, brain and heart ischemia, spinocerebellar ataxia and retina in vivo. However, its exact mechanism of action is not known. MANF is widely expressed in most human and mouse organs with high levels in secretory tissues. Intracellularly, MANF localizes to the endoplasmic reticulum (ER) and ER stress increases it's expression in cells and tissues. Furthermore, increased MANF levels has been detected in the sera of young children with newly diagnosed Type 1 (T1D) diabetes and Type 2 (T2D) diabetic patients. ER stress is caused by the accumulation of misfolded and aggregated proteins in the ER. It activates a cellular defense mechanism, the unfolded protein response (UPR), a signaling cascade trying to restore ER homeostasis. However, if prolonged, unresolved ER stress leads to apoptosis. Unresolved ER stress contributes to the progressive death of pancreatic insulin-producing beta cells in both T1D and T2D. Diabetes mellitus is characterized by hyperglycemia, caused by the inability of the beta cells to maintain sufficient levels of circulating insulin. The current medications, insulin and antidiabetic drugs, alleviate diabetic symptoms but cannot reconstitute physiological insulin secretion which increases the risk of devastating vascular complications of the disease. Thus, one of the main strategies in improving current diabetes therapy is to define and validate novel approaches to protect beta cells from stress as well as activate their regeneration. Embryonic deletion of the Manf gene in mice led to gradual postnatal development of insulin-deficient diabetes caused by reduced beta cell proliferation and increased beta cell death due to increased and sustained ER stress. In vitro, recombinant MANF partly protected mouse and human beta cells from ER stress-induced beta cell death and potentiated mouse and human beta cell proliferation. Importantly, in vivo overexpression of MANF in the pancreas of T1D mice led to increased beta cell proliferation and decreased beta cell death, suggesting that MANF could be a new therapeutic candidate for beta cell protection and regeneration in diabetes.
  • Ajoolabady, Amir; Lindholm, Dan; Ren, Jun; Pratico, Domenico (2022)
    Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by gradual loss of memory and cognitive function, which constitutes a heavy burden on the healthcare system globally. Current therapeutics to interfere with the underlying disease process in AD is still under development. Although many efforts have centered on the toxic forms of A beta to effectively tackle AD, considering the unsatisfactory results so far it is vital to examine other targets and therapeutic approaches as well. The endoplasmic reticulum (ER) stress refers to the build-up of unfolded or misfolded proteins within the ER, thus, perturbing the ER and cellular homeostasis. Emerging evidence indicates that ER stress contributes to the onset and development of AD. A thorough elucidation of ER stress machinery in AD pathology may help to open up new therapeutic avenues in the management of this devastating condition to relieve the cognitive dementia symptoms. Herein, we aim at deciphering the unique role of ER stress in AD pathogenesis, reviewing key findings, and existing controversy in an attempt to summarize plausible therapeutic interventions in the management of AD pathophysiology.
  • Voutilainen, Merja H.; De Lorenzo, Francesca; Stepanova, Polina; Bäck, Susanne; Pulkkila, Päivi; Pörsti, Eeva; Saarma, Mart; Männistö, Pekka T.; Tuominen, Raimo K. (2017)
    Parkinson's disease (PD) is a neurodegenerative disorder associated with a progressive loss of dopaminergic (DAergic) neurons of the substantia nigra (SN) and the accumulation of intracellular inclusions containing alpha-synuclein. Current therapies do not stop the progression of the disease, and the efficacy of these treatments wanes over time. Neurotrophic factors (NTFs) are naturally occurring proteins promoting the survival and differentiation of neurons and the maintenance of neuronal contacts. CDNF (cerebral dopamine NTF) and GDNF (glial cell line-derived NTF) are able to protect DAergic neurons against toxin-induced degeneration in experimental models of PD. Here, we report an additive neurorestorative effect of coadministration of CDNF and GDNF in the unilateral 6-hydroxydopamine (6-OHDA) lesion model of PD in rats. NTFs were given into the striatum four weeks after unilateral intrastriatal injection of 6-OHDA (20 mu g). Amphetamine-induced (2.5 mg/kg, i.p.) rotational behavior was measured every two weeks. Number of tyrosine hydroxylase (TH)-positive cells from SN pars compacta (SNpc) and density of TH-positive fibers in the striatum were analyzed at 12 weeks after lesion. CDNF and GDNF alone restored the DAergic function, and one specific dose combination had an additive effect: CDNF (2.5 mu g) and GDNF (1 mu g) coadministration led to a stronger trophic effect relative to either of the single treatments alone. The additive effect may indicate different mechanism of action for the NTFs. Indeed, both NTFs activated the survival promoting PI3 kinase (PI3K)-Akt signaling pathway, but only CDNF decreased the expression level of tested endoplasmatic reticulum (ER) stress markers ATF6, glucose-regulated protein 78 (GRP78), and phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2 alpha).
  • Ruiz, Mario; Bodhicharla, Rakesh; Stahlman, Marcus; Svensk, Emma; Busayavalasa, Kiran; Palmgren, Henrik; Ruhanen, Hanna; Boren, Jan; Pilon, Marc (2019)
    The human AdipoR1 and AdipoR2 proteins, as well as their C. elegans homolog PAQR-2, protect against cell membrane rigidification by exogenous saturated fatty acids by regulating phospholipid composition. Here, we show that mutations in the C. elegans gene acs-13 help to suppress the phenotypes of paqr-2 mutant worms, including their characteristic membrane fluidity defects. acs-13 encodes a homolog of the human acyl-CoA synthetase ACSL1, and localizes to the mitochondrial membrane where it likely activates long chains fatty acids for import and degradation. Using siRNA combined with lipidomics and membrane fluidity assays (FRAP and Laurdan dye staining) we further show that the human ACSL1 potentiates lipotoxicity by the saturated fatty acid palmitate: silencing ACSL1 protects against the membrane rigidifying effects of palmitate and acts as a suppressor of AdipoR2 knockdown, thus echoing the C. elegans findings. We conclude that acs-13 mutations in C. elegans and ACSL1 knockdown in human cells prevent lipotoxicity by promoting increased levels of polyunsaturated fatty acid-containing phospholipids.
  • Lindström, Riitta; Lindholm, Päivi; Kallijärvi, Jukka; Palgi, Mari; Saarma, Mart; Heino, Tapio I. (2016)
    Disturbances in the homeostasis of endoplasmic reticulum (ER) referred to as ER stress is involved in a variety of human diseases. ER stress activates unfolded protein response (UPR), a cellular mechanism the purpose of which is to restore ER homeostasis. Previous studies show that Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) is an important novel component in the regulation of UPR. In vertebrates, MANF is upregulated by ER stress and protects cells against ER stress-induced cell death. Biochemical studies have revealed an interaction between mammalian MANF and GRP78, the major ER chaperone promoting protein folding. In this study we discovered that the upregulation of MANF expression in response to drug-induced ER stress is conserved between Drosophila and mammals. Additionally, by using a genetic in vivo approach we found genetic interactions between Drosophila Manf and genes encoding for Drosophila homologues of GRP78, PERK and XBP1, the key components of UPR. Our data suggest a role for Manf in the regulation of Drosophila UPR.
  • Palgi, Mari; Greco, Dario; Lindström, Riitta; Auvinen, Petri; Heino, Tapio I. (2012)
  • Screen, Mark; Raheem, Olayinka; Holmlund-Hampf, Jeanette; Jonson, Per Harald; Huovinen, Sanna; Hackman, Peter; Udd, Bjarne (2014)
  • Lindstrom, Riitta; Lindholm, Paivi; Palgi, Mari; Saarma, Mart; Heino, Tapio I. (2017)
    Background: Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF) and Cerebral Dopamine Neurotrophic Factor (CDNF) form an evolutionarily conserved family of neurotrophic factors. Orthologues for MANF/CDNF are the only neurotrophic factors as yet identified in invertebrates with conserved amino acid sequence. Previous studies indicate that mammalian MANF and CDNF support and protect brain dopaminergic system in non-cell-autonomous manner. However, MANF has also been shown to function intracellularly in the endoplasmic reticulum. To date, the knowledge on the interacting partners of MANF/CDNF and signaling pathways they activate is rudimentary. Here, we have employed the Drosophila genetics to screen for potential interaction partners of Drosophila Manf (DmManf) in vivo. Results: We first show that DmManf plays a role in the development of Drosophila wing. We exploited this function by using Drosophila UAS-RNAi lines and discovered novel genetic interactions of DmManf with genes known to function in the mitochondria. We also found evidence of an interaction between DmManf and the Drosophila homologue encoding Ku70, the closest structural homologue of SAP domain of mammalian MANF. Conclusions: In addition to the previously known functions of MANF/CDNF protein family, DmManf also interacts with mitochondria-related genes. Our data supports the functional importance of these evolutionarily significant proteins and provides new insights for the future studies.
  • Galli, Emilia; Harkonen, Taina; Sainio, Markus; Ustav, Mart; Toots, Urve; Urtti, Arto; Yliperttula, Marjo; Lindahl, Maria; Knip, Mikael; Saarma, Mart; Lindholm, Paivi (2016)
    Mesencephalic astrocyte-derived neurotrophic factor (MANF) was recently shown to be essential for the survival and proliferation of pancreatic beta-cells in mice, where deletion of MANF resulted in diabetes. The current study aimed at determining whether the concentration of circulating MANF is associated with the clinical manifestation of human type 1 diabetes (T1D). MANF expression in T1D or MANF levels in serum have not been previously studied. We developed an enzyme-linked immunosorbent assay (ELISA) for MANF and measured serum MANF concentrations from 186 newly diagnosed children and adolescents and 20 adults with longer-term T1D alongside with age-matched controls. In healthy controls the mean serum MANF concentration was 7.0 ng/ml. High MANF concentrations were found in children 1-9 years of age close to the diagnosis of T1D. The increased MANF concentrations were not associated with diabetes-predictive autoantibodies and autoantibodies against MANF were extremely rare. Patients with conspicuously high MANF serum concentrations had lower C-peptide levels compared to patients with moderate MANF concentrations. Our data indicate that increased MANF concentrations in serum are associated with the clinical manifestation of T1D in children, but the exact mechanism behind the increase remains elusive.
  • Balboa, Diego; Saarimäki-Vire, Jonna; Borshagovski, Daniel; Survila, Mantas; Lindholm, Päivi; Galli, Emilia; Eurola, Solja; Ustinov, Jarkko; Grym, Heli; Huopio, Hanna; Partanen, Juha; Wartiovaara, Kirmo; Otonkoski, Timo (2018)
    Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development.