Browsing by Subject "ENHANCER"

Sort by: Order: Results:

Now showing items 1-7 of 7
  • Sahu, Biswajyoti; Pihlajamaa, Paivi; Dubois, Vanessa; Kerkhofs, Stefanie; Claessens, Frank; Jänne, Olli A. (2014)
  • Hu, Ming; Cebola, Ines; Carrat, Gaelle; Jiang, Shuying; Nawaz, Sameena; Khamis, Amna; Canouil, Mickael; Froguel, Philippe; Schulte, Anke; Solimena, Michele; Ibberson, Mark; Marchetti, Piero; Cardenas-Diaz, Fabian L.; Gadue, Paul J.; Hastoy, Benoit; Almeida-Souza, Leonardo; McMahon, Harvey; Rutter, Guy A. (2021)
    Using chromatin conformation capture, we show that an enhancer cluster in the STARD10 type 2 diabetes (T2D) locus forms a defined 3-dimensional (3D) chromatin domain. A 4.1-kb region within this locus, carrying 5 T2D-associated variants, physically interacts with CTCF-binding regions and with an enhancer possessing strong transcriptional activity. Analysis of human islet 3D chromatin interaction maps identifies the FCHSD2 gene as an additional target of the enhancer cluster. CRISPR-Cas9-mediated deletion of the variant region, or of the associated enhancer, from human pancreas-derived EndoC-bH1 cells impairs glucose- stimulated insulin secretion. Expression of both STARD10 and FCHSD2 is reduced in cells harboring CRISPR deletions, and lower expression of STARD10 and FCHSD2 is associated, the latter nominally, with the possession of risk variant alleles in human islets. Finally, CRISPR-Cas9-mediated loss of STARD10 or FCHSD2, but not ARAP1, impairs regulated insulin secretion. Thus, multiple genes at the STARD10 locus influence b cell function.
  • Wagner, Maximilian; Bracun, Sandra; Duenser, Anna; Sturmbauer, Christian; Gessl, Wolfgang; Ahi, Ehsan Pashay (2022)
    Background Elasmoid scales are one of the most common dermal appendages and can be found in almost all species of bony fish differing greatly in their shape. Whilst the genetic underpinnings behind elasmoid scale development have been investigated, not much is known about the mechanisms involved in moulding of scales. To investigate the links between gene expression differences and morphological divergence, we inferred shape variation of scales from two different areas of the body (anterior and posterior) stemming from ten haplochromine cichlid species from different origins (Lake Tanganyika, Lake Malawi, Lake Victoria and riverine). Additionally, we investigated transcriptional differences of a set of genes known to be involved in scale development and morphogenesis in fish. Results We found that scales from the anterior and posterior part of the body strongly differ in their overall shape, and a separate look on scales from each body part revealed similar trajectories of shape differences considering the lake origin of single investigated species. Above all, nine as well as 11 out of 16 target genes showed expression differences between the lakes for the anterior and posterior dataset, respectively. Whereas in posterior scales four genes (dlx5, eda, rankl and shh) revealed significant correlations between expression and morphological differentiation, in anterior scales only one gene (eda) showed such a correlation. Furthermore, eda displayed the most significant expression difference between species of Lake Tanganyika and species of the other two younger lakes. Finally, we found genetic differences in downstream regions of eda gene (e.g., in the eda-tnfsf13b inter-genic region) that are associated with observed expression differences. This is reminiscent of a genetic difference in the eda-tnfsf13b inter-genic region which leads to gain or loss of armour plates in stickleback. Conclusion These findings provide evidence for cross-species transcriptional differences of an important morphogenetic factor, eda, which is involved in formation of ectodermal appendages. These expression differences appeared to be associated with morphological differences observed in the scales of haplochromine cichlids indicating potential role of eda mediated signal in divergent scale morphogenesis in fish.
  • Fachal, L.; Aschard, H.; Beesley, J.; Barnes, D.R.; Allen, J.; Kar, S.; Pooley, K.A.; Dennis, J.; Michailidou, K.; Turman, C.; Soucy, P.; Lemaçon, A.; Lush, M.; Tyrer, J.P.; Ghoussaini, M.; Marjaneh, M.M.; Jiang, X.; Agata, S.; Aittomäki, K.; Alonso, M.R.; Andrulis, I.L.; Anton-Culver, H.; Antonenkova, N.N.; Arason, A.; Arndt, V.; Aronson, K.J.; Arun, B.K.; Auber, B.; Auer, P.L.; Azzollini, J.; Balmaña, J.; Barkardottir, R.B.; Barrowdale, D.; Beeghly-Fadiel, A.; Benitez, J.; Bermisheva, M.; Białkowska, K.; Blanco, A.M.; Blomqvist, C.; Blot, W.; Bogdanova, N.V.; Bojesen, S.E.; Bolla, M.K.; Bonanni, B.; Borg, A.; Bosse, K.; Brauch, H.; Brenner, H.; Briceno, I.; Brock, I.W.; Brooks-Wilson, A.; Brüning, T.; Burwinkel, B.; Buys, S.S.; Cai, Q.; Caldés, T.; Caligo, M.A.; Camp, N.J.; Campbell, I.; Canzian, F.; Carroll, J.S.; Carter, B.D.; Castelao, J.E.; Chiquette, J.; Christiansen, H.; Chung, W.K.; Claes, K.B.M.; Clarke, C.L.; Mari, V.; Berthet, P.; Castera, L.; Vaur, D.; Lallaoui, H.; Bignon, Y.-J.; Uhrhammer, N.; Bonadona, V.; Lasset, C.; Révillion, F.; Vennin, P.; Muller, D.; Gomes, D.M.; Ingster, O.; Coupier, I.; Pujol, P.; Collonge-Rame, M.-A.; Mortemousque, I.; Bera, O.; Rose, M.; Baurand, A.; Bertolone, G.; Faivre, L.; Dreyfus, H.; Leroux, D.; Venat-Bouvet, L.; Bézieau, S.; Delnatte, C.; Chiesa, J.; Gilbert-Dussardier, B.; Gesta, P.; Prieur, F.P.; Bronner, M.; Sokolowska, J.; Coulet, F.; Boutry-Kryza, N.; Calender, A.; Giraud, S.; Leone, M.; Fert-Ferrer, S.; Stoppa-Lyonnet, D.; Jiao, Y.; Lesueur, F.L.; Mebirouk, N.; Barouk-Simonet, E.; Bubien, V.; Longy, M.; Sevenet, N.; Gladieff, L.; Toulas, C.; Reimineras, A.; Sobol, H.; Paillerets, B.B.-D.; Cabaret, O.; Caron, O.; Guillaud-Bataille, M.; Rouleau, E.; Belotti, M.; Buecher, B.; Caputo, S.; Colas, C.; Pauw, A.D.; Fourme, E.; Gauthier-Villars, M.; Golmard, L.; Moncoutier, V.; Saule, C.; Donaldson, A.; Murray, A.; Brady, A.; Brewer, C.; Pottinger, C.; Miller, C.; Gallagher, D.; Gregory, H.; Cook, J.; Eason, J.; Adlard, J.; Barwell, J.; Ong, K.-R.; Snape, K.; Walker, L.; Izatt, L.; Side, L.; Tischkowitz, M.; Rogers, M.T.; Porteous, M.E.; Ahmed, M.; Morrison, P.J.; Brennan, P.; Eeles, R.; Davidson, R.; Collée, M.; Cornelissen, S.; Couch, F.J.; Cox, A.; Cross, S.S.; Cybulski, C.; Czene, K.; Daly, M.B.; de la Hoya, M.; Devilee, P.; Diez, O.; Ding, Y.C.; Dite, G.S.; Domchek, S.M.; Dörk, T.; dos-Santos-Silva, I.; Droit, A.; Dubois, S.; Dumont, M.; Duran, M.; Durcan, L.; Dwek, M.; Eccles, D.M.; Engel, C.; Eriksson, M.; Evans, D.G.; Fasching, P.A.; Fletcher, O.; Floris, G.; Flyger, H.; Foretova, L.; Foulkes, W.D.; Friedman, E.; Fritschi, L.; Frost, D.; Gabrielson, M.; Gago-Dominguez, M.; Gambino, G.; Ganz, P.A.; Gapstur, S.M.; Garber, J.; García-Sáenz, J.A.; Gaudet, M.M.; Georgoulias, V.; Giles, G.; Glendon, G.; Godwin, A.K.; Goldberg, M.S.; Goldgar, D.E.; González-Neira, A.; Tibiletti, M.G.; Greene, M.H.; Grip, M.; Gronwald, J.; Grundy, A.; Guénel, P.; Hahnen, E.; Haiman, C.A.; Håkansson, N.; Hall, P.; Hamann, U.; Harrington, P.A.; Hartikainen, J.M.; Hartman, M.; He, W.; Healey, C.S.; Heemskerk-Gerritsen, B.A.M.; Heyworth, J.; Hillemanns, P.; Hogervorst, F.B.L.; Hollestelle, A.; Hooning, M.; Hopper, J.; Howell, A.; Huang, G.; Hulick, P.J.; Imyanitov, E.N.; Sexton, A.; Christian, A.; Trainer, A.; Spigelman, A.; Fellows, A.; Shelling, A.; Fazio, A.D.; Blackburn, A.; Crook, A.; Meiser, B.; Patterson, B.; Clarke, C.; Saunders, C.; Hunt, C.; Scott, C.; Amor, D.; Marsh, D.; Edkins, E.; Salisbury, E.; Haan, E.; Neidermayr, E.; Macrea, F.; Farshid, G.; Lindeman, G.; Chenevix-Trench, G.; Mann, G.; Giles, G.; Gill, G.; Thorne, H.; Campbell, I.; Hickie, I.; Winship, I.; Flanagan, J.; Kollias, J.; Visvader, J.; Stone, J.; Taylor, J.; Burke, J.; Saunus, J.; Forbes, J.; Hopper, J.; Beesley, J.; Kirk, J.; French, J.; Tucker, K.; Wu, K.; Phillips, K.; Lipton, L.; Andrews, L.; Lobb, L.; Walker, L.; Kentwell, M.; Spurdle, M.; Cummings, M.; Gleeson, M.; Harris, M.; Jenkins, M.; Young, M.A.; Delatycki, M.; Wallis, M.; Burgess, M.; Price, M.; Brown, M.; Southey, M.; Bogwitz, M.; Field, M.; Friedlander, M.; Gattas, M.; Saleh, M.; Hayward, N.; Pachter, N.; Cohen, P.; Duijf, P.; James, P.; Simpson, P.; Fong, P.; Butow, P.; Williams, R.; Kefford, R.; Scott, R.; Milne, R.L.; Balleine, R.; Dawson, S.–J.; Lok, S.; O’Connell, S.; Greening, S.; Nightingale, S.; Edwards, S.; Fox, S.; McLachlan, S.-A.; Lakhani, S.; Antill, Y.; Aalfs, C.; Meijers-Heijboer, H.; van Engelen, K.; Gille, H.; Boere, I.; Collée, M.; van Deurzen, C.; Hooning, M.; Obdeijn, I.-M.; van den Ouweland, A.; Seynaeve, C.; Siesling, S.; Verloop, J.; van Asperen, C.J.; Devilee, P.; van Cronenburg, T.; Blok, R.; de Boer, M.; Garcia, E.G.; Adank, M.; Hogervorst, F.; Jenner, D.; van Leeuwen, F.; Rookus, M.; Russell, N.; Schmidt, M.; van den Belt-Dusebout, S.; Kets, C.; Mensenkamp, A.; de Bock, T.; van der Hout, A.; Mourits, M.; Oosterwijk, J.; Ausems, M.; Koudijs, M.; Clarke, C.; Marsh, D.; Scott, R.; Baxter, R.; Yip, D.; Carpenter, J.; Davis, A.; Pathmanathan, N.; Simpson, P.; Graham, D.; Sachchithananthan, M.; Isaacs, C.; Iwasaki, M.; Jager, A.; Jakimovska, M.; Jakubowska, A.; James, P.A.; Janavicius, R.; Jankowitz, R.C.; John, E.M.; Johnson, N.; Jones, M.E.; Jukkola-Vuorinen, A.; Jung, A.; Kaaks, R.; Kang, D.; Kapoor, P.M.; Karlan, B.Y.; Keeman, R.; Kerin, M.J.; Khusnutdinova, E.; Kiiski, J.I.; Kirk, J.; Kitahara, C.M.; Ko, Y.-D.; Konstantopoulou, I.; Kosma, V.-M.; Koutros, S.; Kubelka-Sabit, K.; Kwong, A.; Kyriacou, K.; Laitman, Y.; Lambrechts, D.; Lee, E.; Leslie, G.; Lester, J.; Lesueur, F.; Lindblom, A.; Lo, W.-Y.; Long, J.; Lophatananon, A.; Loud, J.T.; Lubiński, J.; MacInnis, R.J.; Maishman, T.; Makalic, E.; Mannermaa, A.; Manoochehri, M.; Manoukian, S.; Margolin, S.; Martinez, M.E.; Matsuo, K.; Maurer, T.; Mavroudis, D.; Mayes, R.; McGuffog, L.; McLean, C.; Mebirouk, N.; Meindl, A.; Miller, A.; Miller, N.; Montagna, M.; Moreno, F.; Muir, K.; Mulligan, A.M.; Muñoz-Garzon, V.M.; Muranen, T.A.; Narod, S.A.; Nassir, R.; Nathanson, K.L.; Neuhausen, S.L.; Nevanlinna, H.; Neven, P.; Nielsen, F.C.; Nikitina-Zake, L.; Norman, A.; Offit, K.; Olah, E.; Olopade, O.I.; Olsson, H.; Orr, N.; Osorio, A.; Pankratz, V.S.; Papp, J.; Park, S.K.; Park-Simon, T.-W.; Parsons, M.T.; Paul, J.; Pedersen, I.S.; Peissel, B.; Peshkin, B.; Peterlongo, P.; Peto, J.; Plaseska-Karanfilska, D.; Prajzendanc, K.; Prentice, R.; Presneau, N.; Prokofyeva, D.; Pujana, M.A.; Pylkäs, K.; Radice, P.; Ramus, S.J.; Rantala, J.; Rau-Murthy, R.; Rennert, G.; Risch, H.A.; Robson, M.; Romero, A.; Rossing, M.; Saloustros, E.; Sánchez-Herrero, E.; Sandler, D.P.; Santamariña, M.; Saunders, C.; Sawyer, E.J.; Scheuner, M.T.; Schmidt, D.F.; Schmutzler, R.K.; Schneeweiss, A.; Schoemaker, M.J.; Schöttker, B.; Schürmann, P.; Scott, C.; Scott, R.J.; Senter, L.; Seynaeve, C.M.; Shah, M.; Sharma, P.; Shen, C.-Y.; Shu, X.-O.; Singer, C.F.; Slavin, T.P.; Smichkoska, S.; Southey, M.C.; Spinelli, J.J.; Spurdle, A.B.; Stone, J.; Stoppa-Lyonnet, D.; Sutter, C.; Swerdlow, A.J.; Tamimi, R.M.; Tan, Y.Y.; Tapper, W.J.; Taylor, J.A.; Teixeira, M.R.; Tengström, M.; Teo, S.H.; Terry, M.B.; Teulé, A.; Thomassen, M.; Thull, D.L.; Tischkowitz, M.; Toland, A.E.; Tollenaar, R.A.E.M.; Tomlinson, I.; Torres, D.; Torres-Mejía, G.; Troester, M.A.; Truong, T.; Tung, N.; Tzardi, M.; Ulmer, H.-U.; Vachon, C.M.; van Asperen, C.J.; van der Kolk, L.E.; van Rensburg, E.J.; Vega, A.; Viel, A.; Vijai, J.; Vogel, M.J.; Wang, Q.; Wappenschmidt, B.; Weinberg, C.R.; Weitzel, J.N.; Wendt, C.; Wildiers, H.; Winqvist, R.; Wolk, A.; Wu, A.H.; Yannoukakos, D.; Zhang, Y.; Zheng, W.; Hunter, D.; Pharoah, P.D.P.; Chang-Claude, J.; García-Closas, M.; Schmidt, M.K.; Milne, R.L.; Kristensen, V.N.; French, J.D.; Edwards, S.L.; Antoniou, A.C.; Chenevix-Trench, G.; Simard, J.; Easton, D.F.; Kraft, P.; Dunning, A.M.; Collaborators, GEMO Study; Collaborators, EMBRACE; Investigators, KConFab; Investigators, HEBON; Investigators, ABCTB (2020)
    Fine-mapping of causal variants and integration of epigenetic and chromatin conformation data identify likely target genes for 150 breast cancer risk regions. Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
  • Bäck, Susanne; Dossat, Amanda; Parkkinen, Ilmari; Koivula, Pyry; Airavaara, Mikko; Richie, Christopher T.; Chen, Yun-Hsiang; Wang, Yun; Harvey, Brandon K. (2019)
    The cytomegalovirus (CMV) immediate early promoter has been extensively developed and exploited for transgene expression in vitro and in vivo, including human clinical trials. The CMV promoter has long been considered a stable, constitutive and ubiquitous promoter for transgene expression. Using two different CMV-based promoters, we found an increase in CMV-driven transgene expression in the rodent brain and in primary neuronal cultures in response to methamphetamine, glutamate, kainic acid, and activation of G-protein coupled receptor signaling using designer receptors exclusively activated by designer drugs (DREADDs). In contrast, promoters derived from human synapsin 1 (hSyn1) gene or elongation factor 1a (EF1a) did not exhibit altered transgene expression in response to the same neuronal stimulation. Overall, our results suggest that the long standing assertion that the CMV promoter confers constitutive expression in neurons should be reevaluated and future studies should evaluate the activity of the CMV promoter in a given application.
  • Torella, Annalaura; Zanobio, Mariateresa; Zeuli, Roberta; Blanco, Francesca del Vecchio; Savarese, Marco; Giugliano, Teresa; Garofalo, Arcomaria; Piluso, Giulio; Politano, Luisa; Nigro, Vincenzo (2020)
    A nonsense mutation adds a premature stop signal that hinders any further translation of a protein-coding gene, usually resulting in a null allele. To investigate the possible exceptions, we used theDMDgene as an ideal model. First, because dystrophin absence causes Duchenne muscular dystrophy (DMD), while its reduction causes Becker muscular dystrophy (BMD). Second, theDMDgene is X-linked and there is no second allele that can interfere in males. Third, databases are accumulating reports on many mutations and phenotypic data. Finally, becauseDMDmutations may have important therapeutic implications. For our study, we analyzed large databases (LOVD, HGMD and ClinVar) and literature and revised critically all data, together with data from our internal patients. We totally collected 2593 patients. Positioning these mutations along the dystrophin transcript, we observed a nonrandom distribution of BMD-associated mutations within selected exons and concluded that the position can be predictive of the phenotype. Nonsense mutations always cause DMD when occurring at any point in fifty-one exons. In the remaining exons, we found milder BMD cases due to early 5' nonsense mutations, if reinitiation can occur, or due to late 3' nonsense when the shortened product retains functionality. In the central part of the gene, all mutations in some in-frame exons, such as in exons 25, 31, 37 and 38 cause BMD, while mutations in exons 30, 32, 34 and 36 cause DMD. This may have important implication in predicting the natural history and the efficacy of therapeutic use of drug-stimulated translational readthrough of premature termination codons, also considering the action of internal natural rescuers. More in general, our survey confirm that a nonsense mutation should be not necessarily classified as a null allele and this should be considered in genetic counselling.
  • Patel, Saroor A.; Hirosue, Shoko; Rodrigues, Paulo; Vojtasova, Erika; Richardson, Emma K.; Ge, Jianfeng; Syafruddin, Saiful E.; Speed, Alyson; Papachristou, Evangelia K.; Baker, David; Clarke, David; Purvis, Stephenie; Wesolowski, Ludovic; Dyas, Anna; Castillon, Leticia; Caraffini, Veronica; Bihary, Dora; Yong, Cissy; Harrison, David J.; Stewart, Grant D.; Machiela, Mitchell J.; Purdue, Mark P.; Chanock, Stephen J.; Warren, Anne Y.; Samarajiwa, Shamith A.; Carroll, Jason S.; Vanharanta, Sakari (2022)
    Large-scale human genetic data(1-3) have shown that cancer mutations display strong tissue-selectivity, but how this selectivity arises remains unclear. Here, using experimental models, functional genomics and analyses of patient samples, we demonstrate that the lineage transcription factor paired box 8 (PAX8) is required for oncogenic signalling by two common genetic alterations that cause clear cell renal cell carcinoma (ccRCC) in humans: the germline variant rs7948643 at 11q13.3 and somatic inactivation of the von Hippel-Lindau tumour suppressor (VHL)(4-6). VHL loss, which is observed in about 90% of ccRCCs, can lead to hypoxia-inducible factor 2 alpha (HIF2A) stabilization(6,7). We show that HIF2A is preferentially recruited to PAX8-bound transcriptional enhancers, including a pro-tumorigenic cyclin D1 (CCND1) enhancer that is controlled by PAX8 and HIF2A. The ccRCC-protective allele Cat rs7948643 inhibits PAX8 binding at this enhancer and downstream activation of CCND1 expression. Co-option of a PAX8-dependent physiological programme that supports the proliferation of normal renal epithelial cells is also required for MYC expression from the ccRCC metastasis-associated amplicons at 8q21.3-q24.3 (ref. (8)). These results demonstrate that transcriptional lineage factors are essential for oncogenic signalling and that they mediate tissue-specific cancer risk associated with somatic and inherited genetic variants.