Browsing by Subject "ENVIRONMENTAL BIODIVERSITY"

Sort by: Order: Results:

Now showing items 1-4 of 4
  • Halonen, Jaana I.; Erhola, Marina; Furman, Eeva; Haahtela, Tari; Jousilahti, Pekka; Barouki, Robert; Bergman, Åke; Billo, Nils E.; Fuller, Richard; Haines, Andrew; Kogevinas, Manolis; Kolossa-Gehring, Marike; Krauze, Kinga; Lanki, Timo; Vicente, Joana Lobo; Messerli, Peter; Nieuwenhuijsen, Mark; Paloniemi, Riikka; Peters, Annette; Posch, Karl-Heinz; Timonen, Pekka; Vermeulen, Roel; Virtanen, Suvi M.; Bousquet, Jean; Antó, Josep M. (2021)
    In 2015, the Rockefeller Foundation-Lancet Commission launched a report introducing a novel approach called Planetary Health and proposed a concept, a strategy and a course of action. To discuss the concept of Planetary Health in the context of Europe, a conference entitled: “Europe That Protects: Safeguarding Our Planet, Safeguarding Our Health” was held in Helsinki in December 2019. The conference participants concluded with a need for action to support Planetary Health during the 2020s. The Helsinki Declaration emphasizes the urgency to act as scientific evidence shows that human activities are causing climate change, biodiversity loss, land degradation, overuse of natural resources and pollution. They threaten the health and safety of human kind. Global, regional, national, local and individual initiatives are called for and multidisciplinary and multisectorial actions and measures are needed. A framework for an action plan is suggested that can be modified for local needs. Accordingly, a shift from fragmented approaches to policy and practice towards systematic actions will promote human health and health of the planet. Systems thinking will feed into conserving nature and biodiversity, and into halting climate change. The Planetary Health paradigm ‒ the health of human civilization and the state of natural systems on which it depends ‒ must become the driver for all policies.
  • Ruokolainen, Lasse; Parkkola, Anna; Karkman, Antti; Sinkko, Hanna; Peet, Aleksandr; Hämäläinen, Anu-Maaria; von Hertzen, Leena; Tillmann, Vallo; Koski, Katriina; Virtanen, Suvi M.; Niemelä, Onni; Haahtela, Tari; Knip, Mikael (2020)
    Background Allergic diseases are more common in Finland than in Estonia, which-according to the biodiversity hypothesis-could relate to differences in early microbial exposures. Methods We aimed at defining possible microbial perturbations preceding early atopic sensitization. Stool, nasal and skin samples of 6-month-old DIABIMMUNE study participants with HLA susceptibility to type 1 diabetes were collected. We compared microbiotas of sensitized (determined by specific IgE results at 18 months of age) and unsensitized Estonian and Finnish children. Results Sensitization was differentially targeted between populations, as egg-specific and birch pollen-specific IgE was more common in Finland. Microbial diversity and community composition also differed; the genusAcinetobacterwas more abundant in Estonian skin and nasal samples. Particularly, the strain-level profile ofAcinetobacter lwoffiiwas more diverse in Estonian samples. Early microbiota was not generally associated with later sensitization. Microbial composition tended to differ between children with or without IgE-related sensitization, but only in Finland. While land-use pattern (ie green areas vs. urban landscapes around the children's homes) was not associated with microbiota as a whole, it associated with the composition of the genusAcinetobacter. Breastfeeding affected gut microbial composition and seemed to protect from sensitization. Conclusions In accordance with the biodiversity hypothesis, our results support disparate early exposure to environmental microbes between Finnish and Estonian children and suggest a significant role of the genusAcinetobacterin the allergy gap between the two populations. The significance of the observed differences for later allergic sensitization remains open.
  • Ruokolainen, Lasse; Lehtimaki, Jenni; Karkman, Antti; Haahtela, Tari; von Hertzen, Leena; Fyhrquist, Nanna (2017)
    The western world has witnessed a rising epidemic of chronic inflammatory disorders, such as allergies and asthma. This epidemic is expected to spread also to the rest of the world, where allergies have to date been practically absent, along with adoption of western lifestyle. In parallel, biological diversity is globally declining. This inspired Ilkka Hanski, together with medical doctors, to formulate the biodiversity hypothesis of allergic disease. This hypothesis proposes that reduced contact with natural environments, including natural microbial diversity, is associated with unhealthy human microbiota, less able to educate the immune system. Contact with beneficial bacteria, particularly early in life, seems to be instrumental to the normal development of immune responses. Changes in lifestyle and diet, destruction of natural environments, and urbanisation threaten our natural exposure to these beneficial bacteria and thus also reduce their impact on our physiology. To ensure a healthy life, we need to preserve biodiversity in the environment and make sure it finds a favourable home in us. In this review, we will focus on the role of commensal microbiota in human health and wellbeing, as well as the interaction between our microbiota and environmental microbiota, highlighting the contribution of Ilkka Hanski.
  • Ottman, Noora; Ruokolainen, Lasse; Suomalainen, Alina; Sinkko, Hanna; Karisola, Piia; Lehtimaki, Jenni; Lehto, Maili; Hanski, Ilkka; Alenius, Harri; Fyhrquist, Nanna (2019)
    Background: Sufficient exposure to natural environments, in particular soil and its microbes, has been suggested to be protective against allergies. Objective: We aim at gaining more direct evidence of the environment-microbiota-health axis by studying the colonization of gut microbiota in mice after exposure to soil and by examining immune status in both a steady-state situation and during allergic inflammation. Methods: The gastrointestinal microbiota of mice housed on clean bedding or in contact with soil was analyzed by using 16S rRNA gene sequencing, and the data were combined with immune parameters measured in the gut mucosa, lung tissue, and serum samples. Results: We observed marked differences in the small intestinal and fecal microbiota composition between mice housed on clean bedding or in contact with soil, with a higher proportion of Bacteroidetes relative to Firmicutes in the soil group. The housing environment also influenced mouse intestinal gene expression, as shown by upregulated expression of the immunoregulatory markers IL-10, forkhead box P3, and cytotoxic T lymphocyte-associated protein 4 in the soil group. Importantly, using the murine asthma model, we found that exposure to soil polarizes the immune system toward T(H)1 and a higher level of anti-inflammatory signaling, alleviating T(H)2-ype allergic responses. The inflammatory status of the mice had a marked influence on the composition of the gut microbiota, suggesting bidirectional communication along the gut-lung axis. Conclusion: Our results provide evidence of the role of environmentally acquired microbes in alleviating against T(H)2-driven inflammation, which relates to allergic diseases.